論文の概要: Multi-task learning from fixed-wing UAV images for 2D/3D city modeling
- arxiv url: http://arxiv.org/abs/2109.00918v1
- Date: Wed, 25 Aug 2021 14:45:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-05 09:24:42.948755
- Title: Multi-task learning from fixed-wing UAV images for 2D/3D city modeling
- Title(参考訳): 2次元3次元都市モデリングのための固定翼UAV画像からのマルチタスク学習
- Authors: Mohammad R. Bayanlou, Mehdi Khoshboresh-Masouleh
- Abstract要約: マルチタスク学習(Multi-task learning)は、トレーニングデータに制限のある複数のタスクを含むシーン理解のアプローチである。
インフラ開発、交通監視、スマート3D都市、変更検出などの都市管理アプリケーションでは、自動マルチタスクデータ分析が必要である。
本研究では,2D/3D都市モデリングのための固定翼UAV画像を用いたマルチタスク学習手法の性能評価のための共通フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single-task learning in artificial neural networks will be able to learn the
model very well, and the benefits brought by transferring knowledge thus become
limited. In this regard, when the number of tasks increases (e.g., semantic
segmentation, panoptic segmentation, monocular depth estimation, and 3D point
cloud), duplicate information may exist across tasks, and the improvement
becomes less significant. Multi-task learning has emerged as a solution to
knowledge-transfer issues and is an approach to scene understanding which
involves multiple related tasks each with potentially limited training data.
Multi-task learning improves generalization by leveraging the domain-specific
information contained in the training data of related tasks. In urban
management applications such as infrastructure development, traffic monitoring,
smart 3D cities, and change detection, automated multi-task data analysis for
scene understanding based on the semantic, instance, and panoptic annotation,
as well as monocular depth estimation, is required to generate precise urban
models. In this study, a common framework for the performance assessment of
multi-task learning methods from fixed-wing UAV images for 2D/3D city modeling
is presented.
- Abstract(参考訳): ニューラルネットワークにおけるシングルタスク学習はモデルを十分に学習することができ、知識の伝達によるメリットは限定的になる。
この点において、タスクの数が増加すると(セマンティックセグメンテーション、パノスコープセグメンテーション、単眼深度推定、および3Dポイントクラウドなど)、重複した情報がタスク全体に存在し、改善はそれほど重要ではない。
マルチタスク学習は知識伝達問題の解法として登場し、潜在的な訓練データに複数の関連するタスクを含むシーン理解へのアプローチである。
マルチタスク学習は、関連するタスクのトレーニングデータに含まれるドメイン固有情報を活用することにより、一般化を改善する。
インフラ開発、交通監視、スマート3d都市、変化検出などの都市管理アプリケーションでは、セマンティック、インスタンス、パンオプティカルアノテーションに基づくシーン理解のための自動マルチタスクデータ分析と、モノキュラー深さ推定が、正確な都市モデルを生成するために必要となる。
本研究では,2d/3d都市モデルのための固定翼uav画像からのマルチタスク学習手法の性能評価のための共通フレームワークを提案する。
関連論文リスト
- SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection [73.49799596304418]
本稿では,リモートセンシングのためのマルチモーダルデータセットとマルチタスクオブジェクト検出(M2Det)という新しいタスクを提案する。
水平方向または指向方向の物体を、あらゆるセンサーから正確に検出するように設計されている。
この課題は、1)マルチモーダルモデリングの管理に関わるトレードオフ、2)マルチタスク最適化の複雑さに起因する。
論文 参考訳(メタデータ) (2024-12-30T02:47:51Z) - A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
ハイパースペクトル画像上で複数の分類タスクと回帰タスクを同時に行うマルチタスク深層学習モデルを提案する。
我々は、TAIGAと呼ばれる大規模なハイパースペクトルデータセットに対するアプローチを検証した。
結果の総合的定性的および定量的分析により,提案手法が他の最先端手法よりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2024-07-23T11:14:54Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - TVE: Learning Meta-attribution for Transferable Vision Explainer [76.68234965262761]
本稿では,下流タスクにおける様々な視覚モデルを効果的に説明できるTransferable Vision Explainer(TVE)を提案する。
TVEは,大規模データセットの事前学習プロセスを通じて,メタ属性の学習を実現する。
このメタ属性は、一般的なバックボーンエンコーダの汎用性を利用して、入力インスタンスの属性知識を包括的にエンコードし、TVEがシームレスに転送し、様々な下流タスクを説明することを可能にする。
論文 参考訳(メタデータ) (2023-12-23T21:49:23Z) - Multi-task Learning with 3D-Aware Regularization [55.97507478913053]
本稿では,画像エンコーダから抽出した特徴を共有3D特徴空間に投影することで,複数のタスクをインタフェースする構造化3D認識正規化器を提案する。
提案手法はアーキテクチャ非依存であり,従来のマルチタスクバックボーンにプラグインすることで,性能を向上できることを示す。
論文 参考訳(メタデータ) (2023-10-02T08:49:56Z) - Joint 2D-3D Multi-Task Learning on Cityscapes-3D: 3D Detection,
Segmentation, and Depth Estimation [11.608682595506354]
TaskPrompterは革新的なマルチタスクプロンプトフレームワークを提供する。
i)タスク・ジェネリックな表現、ii)タスク固有の表現、iii)タスク間の相互作用の学習を統一する。
新しいベンチマークでは、モノクロ3D車両の検出、セマンティックセグメンテーション、モノクロ深度推定の予測を同時に生成するためにマルチタスクモデルが必要である。
論文 参考訳(メタデータ) (2023-04-03T13:41:35Z) - Few-shot Multimodal Multitask Multilingual Learning [0.0]
我々は、事前学習された視覚と言語モデルを適用することで、マルチモーダルマルチタスク(FM3)設定のための数ショット学習を提案する。
FM3は、ビジョンと言語領域における最も顕著なタスクと、それらの交差点を学習する。
論文 参考訳(メタデータ) (2023-02-19T03:48:46Z) - Hand Image Understanding via Deep Multi-Task Learning [34.515382305252814]
単一のRGB画像から手動物体の包括的情報を抽出する新しい手動画像理解(HIU)フレームワークを提案する。
提案手法は, 様々な広く使用されているデータセットに対する最先端のアプローチを著しく上回っている。
論文 参考訳(メタデータ) (2021-07-24T16:28:06Z) - Anomaly Detection in Video via Self-Supervised and Multi-Task Learning [113.81927544121625]
ビデオにおける異常検出は、コンピュータビジョンの問題である。
本稿では,オブジェクトレベルでの自己教師型およびマルチタスク学習を通じて,ビデオ中の異常事象検出にアプローチする。
論文 参考訳(メタデータ) (2020-11-15T10:21:28Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
マルチタスク学習(Multi-task learning、MTL)は、複数のタスクを共有モデルで同時に学習する機械学習のサブフィールドである。
深層ニューラルネットワークにおけるマルチタスク学習手法の概要を述べる。
論文 参考訳(メタデータ) (2020-09-10T19:31:04Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
マルチタスク学習(MTL)技術は、性能、計算、メモリフットプリントに関する有望な結果を示している。
我々は、コンピュータビジョンにおけるMLLのための最先端のディープラーニングアプローチについて、よく理解された視点を提供する。
論文 参考訳(メタデータ) (2020-04-28T09:15:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。