Topological Link Models of Multipartite Entanglement
- URL: http://arxiv.org/abs/2109.01150v2
- Date: Wed, 15 Jun 2022 23:27:38 GMT
- Title: Topological Link Models of Multipartite Entanglement
- Authors: Ning Bao, Newton Cheng, Sergio Hern\'andez-Cuenca, Vincent Paul Su
- Abstract summary: We show that there exist link representations of entropy vectors which provably cannot be represented by graphs or hypergraphs.
We show that the contraction map proof method generalizes to the topological setting, though now requiring oracular solutions to well-known but difficult problems in knot theory.
- Score: 0.20999222360659606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel model of multipartite entanglement based on topological
links, generalizing the graph/hypergraph entropy cone program. We demonstrate
that there exist link representations of entropy vectors which provably cannot
be represented by graphs or hypergraphs. Furthermore, we show that the
contraction map proof method generalizes to the topological setting, though now
requiring oracular solutions to well-known but difficult problems in knot
theory.
Related papers
- Hyperbolic Heterogeneous Graph Attention Networks [3.0165549581582454]
Most previous heterogeneous graph embedding models represent elements in a heterogeneous graph as vector representations in a low-dimensional Euclidean space.
We propose Hyperbolic Heterogeneous Graph Attention Networks (HHGAT) that learn vector representations in hyperbolic spaces with meta-path instances.
We conducted experiments on three real-world heterogeneous graph datasets, demonstrating that HHGAT outperforms state-of-the-art heterogeneous graph embedding models in node classification and clustering tasks.
arXiv Detail & Related papers (2024-04-15T04:45:49Z) - Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes [4.23480641508611]
Graph Neural Networks (GNNs) are theoretically bounded by the 1-Weisfeiler-Lehman test.
Our study presents a novel perspective by focusing on simple paths within graphs during the topological message-passing process.
arXiv Detail & Related papers (2023-08-13T19:45:20Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Curvature Graph Generative Adversarial Networks [31.763904668737304]
Generative adversarial network (GAN) is widely used for generalized and robust learning on graph data.
Existing GAN-based graph representation methods generate negative samples by random walk or traverse in discrete space.
CurvGAN consistently and significantly outperforms the state-of-the-art methods across multiple tasks.
arXiv Detail & Related papers (2022-03-03T10:00:32Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
Simplicial complexes can be viewed as high dimensional generalizations of graphs that explicitly encode multi-way ordered relations.
We propose a graph convolutional model for learning functions parametrized by the $k$-homological features of simplicial complexes.
arXiv Detail & Related papers (2021-10-28T14:59:41Z) - Self-Supervised Graph Representation Learning via Topology
Transformations [61.870882736758624]
We present the Topology Transformation Equivariant Representation learning, a general paradigm of self-supervised learning for node representations of graph data.
In experiments, we apply the proposed model to the downstream node and graph classification tasks, and results show that the proposed method outperforms the state-of-the-art unsupervised approaches.
arXiv Detail & Related papers (2021-05-25T06:11:03Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - A unified diagrammatic approach to topological fixed point models [0.0]
We introduce a systematic mathematical language for describing fixed point models and apply it to the study of topological phases of matter.
The framework is reminiscent of state-sum models and lattice topological quantum field theories, but is formalised and unified in terms of tensor networks.
In contrast to existing tensor network ansatzes for the study of ground states of topologically ordered phases, the tensor networks in our formalism represent discrete path integrals in Euclidean space-time.
arXiv Detail & Related papers (2020-11-24T12:40:11Z) - Hamiltonian systems, Toda lattices, Solitons, Lax Pairs on weighted
Z-graded graphs [62.997667081978825]
We identify conditions which allow one to lift one dimensional solutions to solutions on graphs.
We show that even for a simple example of a topologically interesting graph the corresponding non-trivial Lax pairs and associated unitary transformations do not lift to a Lax pair on the Z-graded graph.
arXiv Detail & Related papers (2020-08-11T17:58:13Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
We study the intrinsic difficulty in graph classification under the unified concept of resolution dilemmas''
We propose SLIM'', an inductive neural network model for Structural Landmarking and Interaction Modelling.
arXiv Detail & Related papers (2020-06-29T01:01:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.