Curvature Graph Generative Adversarial Networks
- URL: http://arxiv.org/abs/2203.01604v1
- Date: Thu, 3 Mar 2022 10:00:32 GMT
- Title: Curvature Graph Generative Adversarial Networks
- Authors: Jianxin Li, Xingcheng Fu, Qingyun Sun, Cheng Ji, Jiajun Tan, Jia Wu,
Hao Peng
- Abstract summary: Generative adversarial network (GAN) is widely used for generalized and robust learning on graph data.
Existing GAN-based graph representation methods generate negative samples by random walk or traverse in discrete space.
CurvGAN consistently and significantly outperforms the state-of-the-art methods across multiple tasks.
- Score: 31.763904668737304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative adversarial network (GAN) is widely used for generalized and
robust learning on graph data. However, for non-Euclidean graph data, the
existing GAN-based graph representation methods generate negative samples by
random walk or traverse in discrete space, leading to the information loss of
topological properties (e.g. hierarchy and circularity). Moreover, due to the
topological heterogeneity (i.e., different densities across the graph
structure) of graph data, they suffer from serious topological distortion
problems. In this paper, we proposed a novel Curvature Graph Generative
Adversarial Networks method, named \textbf{\modelname}, which is the first
GAN-based graph representation method in the Riemannian geometric manifold. To
better preserve the topological properties, we approximate the discrete
structure as a continuous Riemannian geometric manifold and generate negative
samples efficiently from the wrapped normal distribution. To deal with the
topological heterogeneity, we leverage the Ricci curvature for local structures
with different topological properties, obtaining to low-distortion
representations. Extensive experiments show that CurvGAN consistently and
significantly outperforms the state-of-the-art methods across multiple tasks
and shows superior robustness and generalization.
Related papers
- Generalization of Geometric Graph Neural Networks [84.01980526069075]
We study the generalization capabilities of geometric graph neural networks (GNNs)
We prove a generalization gap between the optimal empirical risk and the optimal statistical risk of this GNN.
The most important observation is that the generalization capability can be realized with one large graph instead of being limited to the size of the graph as in previous results.
arXiv Detail & Related papers (2024-09-08T18:55:57Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - Alleviating neighbor bias: augmenting graph self-supervise learning with
structural equivalent positive samples [1.0507062889290775]
We propose a signal-driven self-supervised method for graph representation learning.
It uses a topological information-guided structural equivalence sampling strategy.
The results show that the model performance can be effectively improved.
arXiv Detail & Related papers (2022-12-08T16:04:06Z) - Latent Graph Inference using Product Manifolds [0.0]
We generalize the discrete Differentiable Graph Module (dDGM) for latent graph learning.
Our novel approach is tested on a wide range of datasets, and outperforms the original dDGM model.
arXiv Detail & Related papers (2022-11-26T22:13:06Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Heterogeneous manifolds for curvature-aware graph embedding [6.3351090376024155]
Graph embeddings are used in a broad range of Graph ML applications.
The quality of such embeddings crucially depends on whether the geometry of the space matches that of the graph.
arXiv Detail & Related papers (2022-02-02T18:18:35Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Semi-Riemannian Graph Convolutional Networks [36.09315878397234]
We develop a principled Semi-Riemannian GCN that first models data in semi-Riemannian manifold of constant nonzero curvature.
Our method provides a geometric inductive bias that is sufficiently flexible to model mixed heterogeneous topologies like hierarchical graphs with cycles.
arXiv Detail & Related papers (2021-06-06T14:23:34Z) - Topological Regularization for Graph Neural Networks Augmentation [12.190045459064413]
We propose a feature augmentation method for graph nodes based on topological regularization.
We have carried out extensive experiments on a large number of datasets to prove the effectiveness of our model.
arXiv Detail & Related papers (2021-04-03T01:37:44Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.