Segmentation of turbulent computational fluid dynamics simulations with
unsupervised ensemble learning
- URL: http://arxiv.org/abs/2109.01381v1
- Date: Fri, 3 Sep 2021 08:52:38 GMT
- Title: Segmentation of turbulent computational fluid dynamics simulations with
unsupervised ensemble learning
- Authors: Maarja Bussov and Joonas N\"attil\"a
- Abstract summary: Computer vision and machine learning tools offer an exciting new way for automatically analyzing and categorizing information from complex computer simulations.
Here we design an ensemble machine learning framework that can independently and robustly categorize and dissect simulation data output contents.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer vision and machine learning tools offer an exciting new way for
automatically analyzing and categorizing information from complex computer
simulations. Here we design an ensemble machine learning framework that can
independently and robustly categorize and dissect simulation data output
contents of turbulent flow patterns into distinct structure catalogues. The
segmentation is performed using an unsupervised clustering algorithm, which
segments physical structures by grouping together similar pixels in simulation
images. The accuracy and robustness of the resulting segment region boundaries
are enhanced by combining information from multiple simultaneously-evaluated
clustering operations. The stacking of object segmentation evaluations is
performed using image mask combination operations. This statistically-combined
ensemble (SCE) of different cluster masks allows us to construct cluster
reliability metrics for each pixel and for the associated segments without any
prior user input. By comparing the similarity of different cluster occurrences
in the ensemble, we can also assess the optimal number of clusters needed to
describe the data. Furthermore, by relying on ensemble-averaged spatial segment
region boundaries, the SCE method enables reconstruction of more accurate and
robust region of interest (ROI) boundaries for the different image data
clusters. We apply the SCE algorithm to 2-dimensional simulation data snapshots
of magnetically-dominated fully-kinetic turbulent plasma flows where accurate
ROI boundaries are needed for geometrical measurements of intermittent flow
structures known as current sheets.
Related papers
- Neural Clustering based Visual Representation Learning [61.72646814537163]
Clustering is one of the most classic approaches in machine learning and data analysis.
We propose feature extraction with clustering (FEC), which views feature extraction as a process of selecting representatives from data.
FEC alternates between grouping pixels into individual clusters to abstract representatives and updating the deep features of pixels with current representatives.
arXiv Detail & Related papers (2024-03-26T06:04:50Z) - Mixture of multilayer stochastic block models for multiview clustering [0.0]
We propose an original method for aggregating multiple clustering coming from different sources of information.
The identifiability of the model parameters is established and a variational Bayesian EM algorithm is proposed for the estimation of these parameters.
The method is utilized to analyze global food trading networks, leading to structures of interest.
arXiv Detail & Related papers (2024-01-09T17:15:47Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Fast conformational clustering of extensive molecular dynamics
simulation data [19.444636864515726]
We present an unsupervised data processing workflow that is specifically designed to obtain a fast conformational clustering of long trajectories.
We combine two dimensionality reduction algorithms (cc_analysis and encodermap) with a density-based spatial clustering algorithm (HDBSCAN)
With the help of four test systems we illustrate the capability and performance of this clustering workflow.
arXiv Detail & Related papers (2023-01-11T14:36:43Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Semantic Attention and Scale Complementary Network for Instance
Segmentation in Remote Sensing Images [54.08240004593062]
We propose an end-to-end multi-category instance segmentation model, which consists of a Semantic Attention (SEA) module and a Scale Complementary Mask Branch (SCMB)
SEA module contains a simple fully convolutional semantic segmentation branch with extra supervision to strengthen the activation of interest instances on the feature map.
SCMB extends the original single mask branch to trident mask branches and introduces complementary mask supervision at different scales.
arXiv Detail & Related papers (2021-07-25T08:53:59Z) - Multiscale Clustering of Hyperspectral Images Through Spectral-Spatial
Diffusion Geometry [9.619814126465206]
Clustering algorithms partition a dataset into groups of similar points.
The primary contribution of this article is the Multiscale Spatially-Regularized Diffusion Learning (M-SRDL) clustering algorithm.
We show that incorporating spatial regularization into a multiscale clustering framework corresponds to smoother and more coherent clusters when applied to HSI data.
arXiv Detail & Related papers (2021-03-29T17:24:28Z) - A Multiscale Environment for Learning by Diffusion [9.619814126465206]
We introduce the Multiscale Environment for Learning by Diffusion (MELD) data model.
We show that the MELD data model precisely captures latent multiscale structure in data and facilitates its analysis.
To efficiently learn the multiscale structure observed in many real datasets, we introduce the Multiscale Learning by Unsupervised Diffusion (M-LUND) clustering algorithm.
arXiv Detail & Related papers (2021-01-31T17:46:19Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
We present LSD-C, a novel method to identify clusters in an unlabeled dataset.
Our method draws inspiration from recent semi-supervised learning practice and proposes to combine our clustering algorithm with self-supervised pretraining and strong data augmentation.
We show that our approach significantly outperforms competitors on popular public image benchmarks including CIFAR 10/100, STL 10 and MNIST, as well as the document classification dataset Reuters 10K.
arXiv Detail & Related papers (2020-06-17T17:58:10Z) - ClusterVO: Clustering Moving Instances and Estimating Visual Odometry
for Self and Surroundings [54.33327082243022]
ClusterVO is a stereo Visual Odometry which simultaneously clusters and estimates the motion of both ego and surrounding rigid clusters/objects.
Unlike previous solutions relying on batch input or imposing priors on scene structure or dynamic object models, ClusterVO is online, general and thus can be used in various scenarios including indoor scene understanding and autonomous driving.
arXiv Detail & Related papers (2020-03-29T09:06:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.