Multiscale Clustering of Hyperspectral Images Through Spectral-Spatial
Diffusion Geometry
- URL: http://arxiv.org/abs/2103.15783v1
- Date: Mon, 29 Mar 2021 17:24:28 GMT
- Title: Multiscale Clustering of Hyperspectral Images Through Spectral-Spatial
Diffusion Geometry
- Authors: Sam L. Polk and James M. Murphy
- Abstract summary: Clustering algorithms partition a dataset into groups of similar points.
The primary contribution of this article is the Multiscale Spatially-Regularized Diffusion Learning (M-SRDL) clustering algorithm.
We show that incorporating spatial regularization into a multiscale clustering framework corresponds to smoother and more coherent clusters when applied to HSI data.
- Score: 9.619814126465206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering algorithms partition a dataset into groups of similar points. The
primary contribution of this article is the Multiscale Spatially-Regularized
Diffusion Learning (M-SRDL) clustering algorithm, which uses
spatially-regularized diffusion distances to efficiently and accurately learn
multiple scales of latent structure in hyperspectral images (HSI). The M-SRDL
clustering algorithm extracts clusterings at many scales from an HSI and
outputs these clusterings' variation of information-barycenter as an exemplar
for all underlying cluster structure. We show that incorporating spatial
regularization into a multiscale clustering framework corresponds to smoother
and more coherent clusters when applied to HSI data and leads to more accurate
clustering labels.
Related papers
- Clustering Based on Density Propagation and Subcluster Merging [92.15924057172195]
We propose a density-based node clustering approach that automatically determines the number of clusters and can be applied in both data space and graph space.
Unlike traditional density-based clustering methods, which necessitate calculating the distance between any two nodes, our proposed technique determines density through a propagation process.
arXiv Detail & Related papers (2024-11-04T04:09:36Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Enhancing cluster analysis via topological manifold learning [0.3823356975862006]
We show that inferring the topological structure of a dataset before clustering can considerably enhance cluster detection.
We combine manifold learning method UMAP for inferring the topological structure with density-based clustering method DBSCAN.
arXiv Detail & Related papers (2022-07-01T15:53:39Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
We propose an end-to-end deep clustering algorithm, i.e., Very Compact Clusters (VCC) for the general datasets.
Our proposed approach achieves better clustering performance over most of the state-of-the-art clustering methods.
arXiv Detail & Related papers (2021-06-09T23:22:03Z) - Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix
Factorization [0.0]
We introduce in this work clustering models based on a total variation (TV) regularization procedure on the cluster membership matrix.
We provide a numerical evaluation of all proposed methods on a hyperspectral dataset obtained from a matrix-assisted laser desorption/ionisation imaging measurement.
arXiv Detail & Related papers (2021-04-25T23:40:41Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - CAST: A Correlation-based Adaptive Spectral Clustering Algorithm on
Multi-scale Data [34.89460002735166]
We study the problem of applying spectral clustering to cluster multi-scale data.
For multi-scale data, distance-based similarity is not effective because objects of a sparse cluster could be far apart.
We propose the algorithm CAST that applies trace Lasso to regularize the coefficient matrix.
arXiv Detail & Related papers (2020-06-08T09:46:35Z) - Supervised Enhanced Soft Subspace Clustering (SESSC) for TSK Fuzzy
Classifiers [25.32478253796209]
Fuzzy c-means based clustering algorithms are frequently used for Takagi-Sugeno-Kang (TSK) fuzzy classifier parameter estimation.
This paper proposes a supervised enhanced soft subspace clustering (SESSC) algorithm, which considers simultaneously the within-cluster compactness, between-cluster separation, and label information in clustering.
arXiv Detail & Related papers (2020-02-27T19:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.