Stochastic Physics-Informed Neural Networks (SPINN): A Moment-Matching
Framework for Learning Hidden Physics within Stochastic Differential
Equations
- URL: http://arxiv.org/abs/2109.01621v1
- Date: Fri, 3 Sep 2021 16:59:12 GMT
- Title: Stochastic Physics-Informed Neural Networks (SPINN): A Moment-Matching
Framework for Learning Hidden Physics within Stochastic Differential
Equations
- Authors: Jared O'Leary, Joel A. Paulson, and Ali Mesbah
- Abstract summary: We propose a framework for training deep neural networks to learn equations that represent hidden physics within differential equations (SDEs)
The proposed framework relies on uncertainty propagation and moment-matching techniques along with state-of-the-art deep learning strategies.
- Score: 4.482886054198202
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Stochastic differential equations (SDEs) are used to describe a wide variety
of complex stochastic dynamical systems. Learning the hidden physics within
SDEs is crucial for unraveling fundamental understanding of the stochastic and
nonlinear behavior of these systems. We propose a flexible and scalable
framework for training deep neural networks to learn constitutive equations
that represent hidden physics within SDEs. The proposed stochastic
physics-informed neural network framework (SPINN) relies on uncertainty
propagation and moment-matching techniques along with state-of-the-art deep
learning strategies. SPINN first propagates stochasticity through the known
structure of the SDE (i.e., the known physics) to predict the time evolution of
statistical moments of the stochastic states. SPINN learns (deep) neural
network representations of the hidden physics by matching the predicted moments
to those estimated from data. Recent advances in automatic differentiation and
mini-batch gradient descent are leveraged to establish the unknown parameters
of the neural networks. We demonstrate SPINN on three benchmark in-silico case
studies and analyze the framework's robustness and numerical stability. SPINN
provides a promising new direction for systematically unraveling the hidden
physics of multivariate stochastic dynamical systems with multiplicative noise.
Related papers
- PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
We propose a new graph learning approach, namely, Physics-encoded Message Passing Graph Network (PhyMPGN)
We incorporate a GNN into a numerical integrator to approximate the temporal marching of partialtemporal dynamics for a given PDE system.
PhyMPGN is capable of accurately predicting various types of operatortemporal dynamics on coarse unstructured meshes.
arXiv Detail & Related papers (2024-10-02T08:54:18Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Learning effective dynamics from data-driven stochastic systems [2.4578723416255754]
This work is devoted to investigating the effective dynamics for slow-fast dynamical systems.
We propose a novel algorithm including a neural network called Auto-SDE to learn in slow manifold.
arXiv Detail & Related papers (2022-05-09T09:56:58Z) - Imitating Deep Learning Dynamics via Locally Elastic Stochastic
Differential Equations [20.066631203802302]
We study the evolution of features during deep learning training using a set of differential equations (SDEs) that each corresponds to a training sample.
Our results shed light on the decisive role of local elasticity in the training dynamics of neural networks.
arXiv Detail & Related papers (2021-10-11T17:17:20Z) - SPINN: Sparse, Physics-based, and Interpretable Neural Networks for PDEs [0.0]
We introduce a class of Sparse, Physics-based, and Interpretable Neural Networks (SPINN) for solving ordinary and partial differential equations.
By reinterpreting a traditional meshless representation of solutions of PDEs as a special sparse deep neural network, we develop a class of sparse neural network architectures that are interpretable.
arXiv Detail & Related papers (2021-02-25T17:45:50Z) - Learning Continuous-Time Dynamics by Stochastic Differential Networks [32.63114111531396]
We propose a flexible continuous-time recurrent neural network named Variational Differential Networks (VSDN)
VSDN embeds the complicated dynamics of the sporadic time series by neural Differential Equations (SDE)
We show that VSDNs outperform state-of-the-art continuous-time deep learning models and achieve remarkable performance on prediction and tasks for sporadic time series.
arXiv Detail & Related papers (2020-06-11T01:40:34Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.