Physics-Informed Neural Networks with Unknown Partial Differential Equations: an Application in Multivariate Time Series
- URL: http://arxiv.org/abs/2503.20144v1
- Date: Wed, 26 Mar 2025 01:24:47 GMT
- Title: Physics-Informed Neural Networks with Unknown Partial Differential Equations: an Application in Multivariate Time Series
- Authors: Seyedeh Azadeh Fallah Mortezanejad, Ruochen Wang, Ali Mohammad-Djafari,
- Abstract summary: This research aims to bridge the gap between data-driven discovery and physics-guided learning.<n>We introduce methods to automatically extract Partial Differential Equations from historical data.<n>We then integrate these learned equations into three different modeling approaches.
- Score: 8.957579200590983
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A significant advancement in Neural Network (NN) research is the integration of domain-specific knowledge through custom loss functions. This approach addresses a crucial challenge: how can models utilize physics or mathematical principles to enhance predictions when dealing with sparse, noisy, or incomplete data? Physics-Informed Neural Networks (PINNs) put this idea into practice by incorporating physical equations, such as Partial Differential Equations (PDEs), as soft constraints. This guidance helps the networks find solutions that align with established laws. Recently, researchers have expanded this framework to include Bayesian NNs (BNNs), which allow for uncertainty quantification while still adhering to physical principles. But what happens when the governing equations of a system are not known? In this work, we introduce methods to automatically extract PDEs from historical data. We then integrate these learned equations into three different modeling approaches: PINNs, Bayesian-PINNs (B-PINNs), and Bayesian Linear Regression (BLR). To assess these frameworks, we evaluate them on a real-world Multivariate Time Series (MTS) dataset. We compare their effectiveness in forecasting future states under different scenarios: with and without PDE constraints and accuracy considerations. This research aims to bridge the gap between data-driven discovery and physics-guided learning, providing valuable insights for practical applications.
Related papers
- Nonlinear Schrödinger Network [0.8249694498830558]
Deep neural networks (DNNs) have achieved exceptional performance across various fields by learning complex nonlinear mappings from large-scale datasets.
To address these issues, hybrid approaches that integrate physics with AI are gaining interest.
This paper introduces a novel physics-based AI model called the "Nonlinear Schr"odinger Network"
arXiv Detail & Related papers (2024-07-19T17:58:00Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - Physics-aware deep learning framework for linear elasticity [0.0]
The paper presents an efficient and robust data-driven deep learning (DL) computational framework for linear continuum elasticity problems.
For an accurate representation of the field variables, a multi-objective loss function is proposed.
Several benchmark problems including the Airimaty solution to elasticity and the Kirchhoff-Love plate problem are solved.
arXiv Detail & Related papers (2023-02-19T20:33:32Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
Physics-informed neural networks (PINNs) are a new tool for solving boundary value problems.
Recent investigations have shown that when designing loss functions for many engineering problems, using first-order derivatives and combining equations from both strong and weak forms can lead to much better accuracy.
In this work, we propose applying the mixed formulation to solve multi-physical problems, specifically a stationary thermo-mechanically coupled system of equations.
arXiv Detail & Related papers (2023-02-09T21:56:59Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
We propose a novel framework based on graph neural networks (GNNs) and radial basis function finite difference (RBF-FD)
RBF-FD is used to construct a high-precision difference format of the differential equations to guide model training.
We illustrate the generalizability, accuracy, and efficiency of the proposed algorithms on different PDE parameters.
arXiv Detail & Related papers (2022-12-06T10:08:02Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Scientific Machine Learning through Physics-Informed Neural Networks:
Where we are and What's next [5.956366179544257]
Physic-Informed Neural Networks (PINN) are neural networks (NNs) that encode model equations.
PINNs are nowadays used to solve PDEs, fractional equations, and integral-differential equations.
arXiv Detail & Related papers (2022-01-14T19:05:44Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Physics informed deep learning for computational elastodynamics without
labeled data [13.084113582897965]
We present a physics-informed neural network (PINN) with mixed-variable output to model elastodynamics problems without resort to labeled data.
Results show the promise of PINN in the context of computational mechanics applications.
arXiv Detail & Related papers (2020-06-10T19:05:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.