A realistic approach to generate masked faces applied on two novel
masked face recognition data sets
- URL: http://arxiv.org/abs/2109.01745v1
- Date: Fri, 3 Sep 2021 22:33:55 GMT
- Title: A realistic approach to generate masked faces applied on two novel
masked face recognition data sets
- Authors: Tudor Mare, Georgian Duta, Mariana-Iuliana Georgescu, Adrian Sandru,
Bogdan Alexe, Marius Popescu, Radu Tudor Ionescu
- Abstract summary: We propose a method for enhancing data sets containing faces without masks by creating synthetic masks and overlaying them on faces in the original images.
We employ our method to generate a number of 445,446 (90%) samples of masks for the CASIA-WebFace data set and 196,254 (96.8%) masks for the CelebA data set.
We show that our method produces significantly more realistic training examples of masks overlaid on faces by asking volunteers to qualitatively compare it to other methods or data sets.
- Score: 14.130698536174767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The COVID-19 pandemic raises the problem of adapting face recognition systems
to the new reality, where people may wear surgical masks to cover their noses
and mouths. Traditional data sets (e.g., CelebA, CASIA-WebFace) used for
training these systems were released before the pandemic, so they now seem
unsuited due to the lack of examples of people wearing masks. We propose a
method for enhancing data sets containing faces without masks by creating
synthetic masks and overlaying them on faces in the original images. Our method
relies on Spark AR Studio, a developer program made by Facebook that is used to
create Instagram face filters. In our approach, we use 9 masks of different
colors, shapes and fabrics. We employ our method to generate a number of
445,446 (90%) samples of masks for the CASIA-WebFace data set and 196,254
(96.8%) masks for the CelebA data set, releasing the mask images at
https://github.com/securifai/masked_faces. We show that our method produces
significantly more realistic training examples of masks overlaid on faces by
asking volunteers to qualitatively compare it to other methods or data sets
designed for the same task. We also demonstrate the usefulness of our method by
evaluating state-of-the-art face recognition systems (FaceNet, VGG-face,
ArcFace) trained on the enhanced data sets and showing that they outperform
equivalent systems trained on the original data sets (containing faces without
masks), when the test benchmark contains masked faces.
Related papers
- FaceMAE: Privacy-Preserving Face Recognition via Masked Autoencoders [81.21440457805932]
We propose a novel framework FaceMAE, where the face privacy and recognition performance are considered simultaneously.
randomly masked face images are used to train the reconstruction module in FaceMAE.
We also perform sufficient privacy-preserving face recognition on several public face datasets.
arXiv Detail & Related papers (2022-05-23T07:19:42Z) - Mask-invariant Face Recognition through Template-level Knowledge
Distillation [3.727773051465455]
Masks affect the performance of previous face recognition systems.
We propose a mask-invariant face recognition solution (MaskInv)
In addition to the distilled knowledge, the student network benefits from additional guidance by margin-based identity classification loss.
arXiv Detail & Related papers (2021-12-10T16:19:28Z) - MLFW: A Database for Face Recognition on Masked Faces [56.441078419992046]
Masked LFW (MLFW) is a tool to generate masked faces from unmasked faces automatically.
The recognition accuracy of SOTA models declines 5%-16% on MLFW database compared with the accuracy on the original images.
arXiv Detail & Related papers (2021-09-13T09:30:10Z) - Masked Face Recognition Challenge: The InsightFace Track Report [79.77020394722788]
During the COVID-19 coronavirus epidemic, almost everyone wears a facial mask, which poses a huge challenge to deep face recognition.
In this workshop, we focus on bench-marking deep face recognition methods under the existence of facial masks.
arXiv Detail & Related papers (2021-08-18T15:14:44Z) - Indian Masked Faces in the Wild Dataset [86.79402670904338]
We present a novel textbfIndian Masked Faces in the Wild (IMFW) dataset which contains images with variations in pose, illumination, resolution, and the variety of masks worn by the subjects.
We have also benchmarked the performance of existing face recognition models on the proposed IMFW dataset.
arXiv Detail & Related papers (2021-06-17T17:23:54Z) - Multi-Dataset Benchmarks for Masked Identification using Contrastive
Representation Learning [0.0]
COVID-19 pandemic has drastically changed accepted norms globally.
Official documents such as passports, driving license and national identity cards are enrolled with fully uncovered face images.
In an airport or security checkpoint it is safer to match the unmasked image of the identifying document to the masked person rather than asking them to remove the mask.
We propose a contrastive visual representation learning based pre-training workflow which is specialized to masked vs unmasked face matching.
arXiv Detail & Related papers (2021-06-10T08:58:10Z) - Boosting Masked Face Recognition with Multi-Task ArcFace [0.973681576519524]
Given the global health crisis caused by COVID-19, mouth and nose-covering masks have become an essential everyday-clothing-accessory.
This measure has put the state-of-the-art face recognition models on the ropes since they have not been designed to work with masked faces.
A full training pipeline is presented based on the ArcFace work, with several modifications for the backbone and the loss function.
arXiv Detail & Related papers (2021-04-20T10:12:04Z) - Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face
Presentation Attack Detection [103.7264459186552]
Face presentation attack detection (PAD) is essential to secure face recognition systems.
Most existing 3D mask PAD benchmarks suffer from several drawbacks.
We introduce a largescale High-Fidelity Mask dataset to bridge the gap to real-world applications.
arXiv Detail & Related papers (2021-04-13T12:48:38Z) - MaskedFace-Net -- A Dataset of Correctly/Incorrectly Masked Face Images
in the Context of COVID-19 [2.7528170226206443]
The wearing of the face masks appears as a solution for limiting the spread of COVID-19.
To perform this task, a large dataset of masked faces is necessary for training deep learning models towards detecting people wearing masks and those not wearing masks.
Some large datasets of masked faces are available in the literature. However, at the moment, there are no available large dataset of masked face images that permits to check if detected masked faces are correctly worn or not.
arXiv Detail & Related papers (2020-08-18T16:38:11Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.