論文の概要: Error Detection in Large-Scale Natural Language Understanding Systems
Using Transformer Models
- arxiv url: http://arxiv.org/abs/2109.01754v1
- Date: Sat, 4 Sep 2021 00:10:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-07 17:05:16.963465
- Title: Error Detection in Large-Scale Natural Language Understanding Systems
Using Transformer Models
- Title(参考訳): 変圧器モデルを用いた大規模自然言語理解システムにおける誤り検出
- Authors: Rakesh Chada, Pradeep Natarajan, Darshan Fofadiya, Prathap Ramachandra
- Abstract要約: Alexa、Siri、Cortana、Google Assistantといった大規模な会話アシスタントは、ドメイン、インテント、名前付きエンティティ認識の複数のモデルを使用して、発話毎に処理する。
オフラインのTransformerモデルを用いて、ドメイン分類エラーを検出する。
そこで我々は,RoBERTaモデルから生成した発話エンコーディングと生産システムのNbest仮説を組み合わせた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale conversational assistants like Alexa, Siri, Cortana and Google
Assistant process every utterance using multiple models for domain, intent and
named entity recognition. Given the decoupled nature of model development and
large traffic volumes, it is extremely difficult to identify utterances
processed erroneously by such systems. We address this challenge to detect
domain classification errors using offline Transformer models. We combine
utterance encodings from a RoBERTa model with the Nbest hypothesis produced by
the production system. We then fine-tune end-to-end in a multitask setting
using a small dataset of humanannotated utterances with domain classification
errors. We tested our approach for detecting misclassifications from one domain
that accounts for <0.5% of the traffic in a large-scale conversational AI
system. Our approach achieves an F1 score of 30% outperforming a bi- LSTM
baseline by 16.9% and a standalone RoBERTa model by 4.8%. We improve this
further by 2.2% to 32.2% by ensembling multiple models.
- Abstract(参考訳): Alexa、Siri、Cortana、Google Assistantといった大規模な会話アシスタントは、ドメイン、インテント、名前付きエンティティ認識の複数のモデルを使用して、発話毎に処理する。
モデル開発の分離と大量のトラフィック量を考えると、そのようなシステムによって誤って処理された発話を特定することは極めて困難である。
オフラインのTransformerモデルを用いて、ドメイン分類エラーを検出する。
本稿では,RoBERTaモデルからの発話符号化と生産システムによるNbest仮説を組み合わせる。
次に、ドメイン分類エラーを伴う人称発話の小さなデータセットを用いて、マルチタスク設定でエンドツーエンドを微調整する。
大規模対話型AIシステムにおいて,トラフィックの0.5%を占める1つのドメインから誤分類を検出するためのアプローチを検証した。
提案手法は,バイ・LSTMベースラインを16.9%,スタンドアローンのRoBERTaモデルを4.8%,F1スコアを30%向上させる。
我々はこれをさらに2.2%から32.2%改善し、複数のモデルを組み立てる。
関連論文リスト
- Predictor-Corrector Enhanced Transformers with Exponential Moving Average Coefficient Learning [73.73967342609603]
トラクションエラーを最小限に抑えるための予測-相関学習フレームワークを提案する。
また、高次予測器を強化するために、指数関数的移動平均ベース係数学習法を提案する。
我々のモデルは3.8BのDeepNetを平均2.9のSacreBLEUで上回り、1/3のパラメータしか使用していない。
論文 参考訳(メタデータ) (2024-11-05T12:26:25Z) - Large Language Monkeys: Scaling Inference Compute with Repeated Sampling [81.34900892130929]
生成したサンプルの数を増やすことで、別の軸として推論計算を探索する。
すべての回答を自動的に検証できるコーディングや形式証明のようなドメインでは、カバレッジの増加は直接的にパフォーマンスの向上に変換される。
多くの世代から正しいサンプルを同定することは、自動検証のない領域における将来の研究にとって重要な方向である。
論文 参考訳(メタデータ) (2024-07-31T17:57:25Z) - Quantized Transformer Language Model Implementations on Edge Devices [1.2979415757860164]
Bidirectional Representations from Transformers (BERT) のような大規模なトランスフォーマーベースモデルは自然言語処理(NLP)アプリケーションに広く利用されている。
これらのモデルは最初、数百万のパラメータを持つ大きなコーパスで事前訓練され、下流のNLPタスクのために微調整される。
これらの大規模モデルの大きな制限の1つは、大きなモデルサイズと推論遅延の増加のため、リソース制限されたデバイスにデプロイできないことである。
論文 参考訳(メタデータ) (2023-10-06T01:59:19Z) - Tryage: Real-time, intelligent Routing of User Prompts to Large Language
Models [1.0878040851637998]
Hugging Faceエコシステムには20万以上のモデルがあり、ユーザーは多面的およびデータドメインに適したモデルを選択し、最適化する。
本稿では,言語モデルルータを利用した文脈認識型ルーティングシステムTryageを提案する。
論文 参考訳(メタデータ) (2023-08-22T17:48:24Z) - Federated Distillation of Natural Language Understanding with Confident
Sinkhorns [12.681983862338619]
ユーザデバイス上で訓練された(ローカル)モデルのフェデレーションから,中央(グローバル)モデルを学習するためのアプローチを提案する。
グローバルモデルを学ぶためには,局所モデルに割り当てられたソフトターゲットの信頼度から,グローバルモデル予測の最適輸送コストを最小化する。
論文 参考訳(メタデータ) (2021-10-06T00:44:00Z) - Fast Uncertainty Quantification for Deep Object Pose Estimation [91.09217713805337]
深層学習に基づくオブジェクトポーズ推定は、しばしば信頼できない、自信過剰である。
本研究では,6-DoFオブジェクトのポーズ推定のための,シンプルで効率的かつプラグアンドプレイなUQ手法を提案する。
論文 参考訳(メタデータ) (2020-11-16T06:51:55Z) - Conformer: Convolution-augmented Transformer for Speech Recognition [60.119604551507805]
最近、トランスフォーマーと畳み込みニューラルネットワーク(CNN)に基づくモデルが、自動音声認識(ASR)の有望な結果を示している。
音声認識のための畳み込み拡張変換器,Conformerを提案する。
広く使われているLibriSpeechベンチマークでは、言語モデルを用いずにWERが2.1%/4.3%、テスト/テストの外部言語モデルで1.9%/3.9%を達成した。
論文 参考訳(メタデータ) (2020-05-16T20:56:25Z) - The Right Tool for the Job: Matching Model and Instance Complexities [62.95183777679024]
NLPモデルが大きくなればなるほど、訓練されたモデルを実行するには、金銭的・環境的なコストを発生させる重要な計算資源が必要である。
我々は、推論中、早期(かつ高速)の"exit"を可能にする文脈表現微調整の修正を提案する。
3つのテキスト分類データセットと2つの自然言語推論ベンチマークの2つのタスクで、5つの異なるデータセットに対して提案した修正を検証した。
論文 参考訳(メタデータ) (2020-04-16T04:28:08Z) - AvgOut: A Simple Output-Probability Measure to Eliminate Dull Responses [97.50616524350123]
機能エンジニアリングなしで、どの発話やトークンが退屈であるかを動的に認識する対話モデルを構築します。
最初のモデルMinAvgOutは、各バッチの出力分布を通して、ダイバーシティスコアを直接最大化する。
第2のモデルであるラベルファインチューニング(LFT)は、多様性スコアによって連続的にスケールされたラベルをソースシーケンスにプリペイドし、多様性レベルを制御する。
3つ目のモデルであるRLは強化学習を採用し、多様性スコアを報奨信号として扱う。
論文 参考訳(メタデータ) (2020-01-15T18:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。