Uncovering the Limits of Text-based Emotion Detection
- URL: http://arxiv.org/abs/2109.01900v1
- Date: Sat, 4 Sep 2021 16:40:06 GMT
- Title: Uncovering the Limits of Text-based Emotion Detection
- Authors: Nurudin Alvarez-Gonzalez, Andreas Kaltenbrunner, Vicen\c{c} G\'omez
- Abstract summary: We consider the two largest corpora for emotion classification: GoEmotions, with 58k messages labelled by readers, and Vent, with 33M writer-labelled messages.
We design a benchmark and evaluate several feature spaces and learning algorithms, including two simple yet novel models on top of BERT.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying emotions from text is crucial for a variety of real world tasks.
We consider the two largest now-available corpora for emotion classification:
GoEmotions, with 58k messages labelled by readers, and Vent, with 33M
writer-labelled messages. We design a benchmark and evaluate several feature
spaces and learning algorithms, including two simple yet novel models on top of
BERT that outperform previous strong baselines on GoEmotions. Through an
experiment with human participants, we also analyze the differences between how
writers express emotions and how readers perceive them. Our results suggest
that emotions expressed by writers are harder to identify than emotions that
readers perceive. We share a public web interface for researchers to explore
our models.
Related papers
- Exploring speech style spaces with language models: Emotional TTS without emotion labels [8.288443063900825]
We propose a novel approach that leverages text awareness to acquire emotional styles without the need for explicit emotion labels or text prompts.
We present TEMOTTS, a two-stage framework for E-TTS that is trained without emotion labels and is capable of inference without auxiliary inputs.
arXiv Detail & Related papers (2024-05-18T23:21:39Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - Seeking Subjectivity in Visual Emotion Distribution Learning [93.96205258496697]
Visual Emotion Analysis (VEA) aims to predict people's emotions towards different visual stimuli.
Existing methods often predict visual emotion distribution in a unified network, neglecting the inherent subjectivity in its crowd voting process.
We propose a novel textitSubjectivity Appraise-and-Match Network (SAMNet) to investigate the subjectivity in visual emotion distribution.
arXiv Detail & Related papers (2022-07-25T02:20:03Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
We discuss several key aspects of multi-modal emotion recognition (MER)
We begin with a brief introduction on widely used emotion representation models and affective modalities.
We then summarize existing emotion annotation strategies and corresponding computational tasks.
Finally, we outline several real-world applications and discuss some future directions.
arXiv Detail & Related papers (2021-08-18T21:55:20Z) - Emotion Recognition under Consideration of the Emotion Component Process
Model [9.595357496779394]
We use the emotion component process model (CPM) by Scherer (2005) to explain emotion communication.
CPM states that emotions are a coordinated process of various subcomponents, in reaction to an event, namely the subjective feeling, the cognitive appraisal, the expression, a physiological bodily reaction, and a motivational action tendency.
We find that emotions on Twitter are predominantly expressed by event descriptions or subjective reports of the feeling, while in literature, authors prefer to describe what characters do, and leave the interpretation to the reader.
arXiv Detail & Related papers (2021-07-27T15:53:25Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
We propose a well-grounded circular-structured representation to utilize the prior knowledge for visual emotion distribution learning.
To be specific, we first construct an Emotion Circle to unify any emotional state within it.
On the proposed Emotion Circle, each emotion distribution is represented with an emotion vector, which is defined with three attributes.
arXiv Detail & Related papers (2021-06-23T14:53:27Z) - EmoDNN: Understanding emotions from short texts through a deep neural
network ensemble [2.459874436804819]
We propose a framework that infers latent individual aspects from brief contents.
We also present a novel ensemble classifier equipped with dynamic dropout convnets to extract emotions from textual context.
Our proposed model can achieve a higher performance in recognizing emotion from noisy contents.
arXiv Detail & Related papers (2021-06-03T09:17:34Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
We present a novel deep learning-based framework to generate embedding representations of fine-grained emotions.
Our framework integrates a contextualized embedding encoder with a multi-head probing model.
Our model is evaluated on the Empathetic Dialogue dataset and shows the state-of-the-art result for classifying 32 emotions.
arXiv Detail & Related papers (2021-04-20T16:55:15Z) - SpanEmo: Casting Multi-label Emotion Classification as Span-prediction [15.41237087996244]
We propose a new model "SpanEmo" casting multi-label emotion classification as span-prediction.
We introduce a loss function focused on modelling multiple co-existing emotions in the input sentence.
Experiments performed on the SemEval2018 multi-label emotion data over three language sets demonstrate our method's effectiveness.
arXiv Detail & Related papers (2021-01-25T12:11:04Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
We propose a modality-transferable model with emotion embeddings to tackle the aforementioned issues.
Our model achieves state-of-the-art performance on most of the emotion categories.
Our model also outperforms existing baselines in the zero-shot and few-shot scenarios for unseen emotions.
arXiv Detail & Related papers (2020-09-21T06:10:39Z) - PO-EMO: Conceptualization, Annotation, and Modeling of Aesthetic
Emotions in German and English Poetry [26.172030802168752]
We consider emotions in poetry as they are elicited in the reader, rather than what is expressed in the text or intended by the author.
We conceptualize a set of aesthetic emotions that are predictive of aesthetic appreciation in the reader, and allow the annotation of multiple labels per line to capture mixed emotions within their context.
arXiv Detail & Related papers (2020-03-17T13:54:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.