論文の概要: ISyNet: Convolutional Neural Networks design for AI accelerator
- arxiv url: http://arxiv.org/abs/2109.01932v1
- Date: Sat, 4 Sep 2021 20:57:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-07 16:38:35.430047
- Title: ISyNet: Convolutional Neural Networks design for AI accelerator
- Title(参考訳): ISyNet:AIアクセラレータのための畳み込みニューラルネットワーク設計
- Authors: Alexey Letunovskiy, Vladimir Korviakov, Vladimir Polovnikov,
Anastasiia Kargapoltseva, Ivan Mazurenko, Yepan Xiong
- Abstract要約: 現在の最先端アーキテクチャは、モデル複雑さを考慮して、ニューラルアーキテクチャサーチ(NAS)によって発見されている。
本稿では,ニューラルネットワーク探索空間のハードウェア効率の指標として,行列効率測定(MEM),ハードウェア効率の高い演算からなる探索空間,レイテンシを考慮したスケーリング手法を提案する。
我々は、ImageNet上のNPUデバイスの設計アーキテクチャと、下流の分類および検出タスクの一般化能力の利点を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years Deep Learning reached significant results in many practical
problems, such as computer vision, natural language processing, speech
recognition and many others. For many years the main goal of the research was
to improve the quality of models, even if the complexity was impractically
high. However, for the production solutions, which often require real-time
work, the latency of the model plays a very important role. Current
state-of-the-art architectures are found with neural architecture search (NAS)
taking model complexity into account. However, designing of the search space
suitable for specific hardware is still a challenging task. To address this
problem we propose a measure of hardware efficiency of neural architecture
search space - matrix efficiency measure (MEM); a search space comprising of
hardware-efficient operations; a latency-aware scaling method; and ISyNet - a
set of architectures designed to be fast on the specialized neural processing
unit (NPU) hardware and accurate at the same time. We show the advantage of the
designed architectures for the NPU devices on ImageNet and the generalization
ability for the downstream classification and detection tasks.
- Abstract(参考訳): 近年、Deep Learningはコンピュータビジョン、自然言語処理、音声認識など多くの実践的な問題で大きな成果を上げている。
この研究の主な目的は、たとえ複雑さが過激に高いとしても、モデルの品質を改善することであった。
しかし、しばしばリアルタイムな作業を必要とする運用ソリューションでは、モデルのレイテンシが非常に重要な役割を果たす。
現在の最先端アーキテクチャは、モデル複雑性を考慮したニューラルアーキテクチャサーチ(NAS)によって見出される。
しかし、特定のハードウェアに適した検索スペースの設計は依然として難しい課題である。
この問題に対処するため,我々は,ニューラルネットワーク探索空間のハードウェア効率の測定手法として,行列効率測定(MEM),ハードウェア効率の高い操作からなる探索空間,遅延対応スケーリング手法,および特殊ニューラル処理ユニット(NPU)ハードウェア上で高速かつ高精度に設計されたアーキテクチャセットISyNetを提案する。
我々は、ImageNet上のNPUデバイスの設計アーキテクチャと、下流の分類および検出タスクの一般化能力の利点を示す。
関連論文リスト
- Hardware Aware Evolutionary Neural Architecture Search using
Representation Similarity Metric [12.52012450501367]
ハードウェア対応ニューラルアーキテクチャサーチ(ハードウェア対応ニューラルアーキテクチャサーチ、HW-NAS)は、特定のタスクとターゲットハードウェアのためにニューラルネットワークのアーキテクチャを自動的に設計する技術である。
HW-NASでは、重要な計算資源を必要とするため、候補アーキテクチャの性能を評価することが重要な課題である。
本稿では,HW-EvRSNASと呼ばれるハードウェア対応進化型NAS手法を提案する。
論文 参考訳(メタデータ) (2023-11-07T11:58:40Z) - DONNAv2 -- Lightweight Neural Architecture Search for Vision tasks [6.628409795264665]
計算効率の良いニューラルアーキテクチャ蒸留 - DONNAv2 のための次世代ニューラルアーキテクチャ設計について述べる。
DONNAv2は、より大きなデータセットに対して、DONNAの計算コストを10倍削減する。
NASサーチスペースの品質を向上させるため、DONNAv2はブロック知識蒸留フィルタを利用して推論コストの高いブロックを除去する。
論文 参考訳(メタデータ) (2023-09-26T04:48:50Z) - Fast GraspNeXt: A Fast Self-Attention Neural Network Architecture for
Multi-task Learning in Computer Vision Tasks for Robotic Grasping on the Edge [80.88063189896718]
アーキテクチャと計算の複雑さが高いと、組み込みデバイスへのデプロイに適さない。
Fast GraspNeXtは、ロボットグルーピングのためのコンピュータビジョンタスクに埋め込まれたマルチタスク学習に適した、高速な自己認識型ニューラルネットワークアーキテクチャである。
論文 参考訳(メタデータ) (2023-04-21T18:07:14Z) - SuperNet in Neural Architecture Search: A Taxonomic Survey [14.037182039950505]
このサーベイは、ウェイトシェアリングを使用して、すべてのアーキテクチャをサブモデルとして組み立てるニューラルネットワークを構築するスーパーネット最適化に焦点を当てている。
データ側最適化、低ランク相関緩和、多数のデプロイメントシナリオに対するトランスファー可能なNASなどです。
論文 参考訳(メタデータ) (2022-04-08T08:29:52Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
ディープラーニングは、ニューラルネットワークアーキテクチャエンジニアリングに対する需要の高まりにつながっている。
ニューラルネットワーク検索(NAS)は、手動ではなく、データ駆動方式でニューラルネットワークアーキテクチャを自動設計することを目的としている。
NASはコンピュータビジョンの幅広い問題に適用されている。
論文 参考訳(メタデータ) (2022-02-15T08:06:50Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Efficient Neural Architecture Search with Performance Prediction [0.0]
ニューラルアーキテクチャ検索を使用して、目前にあるタスクに最適なネットワークアーキテクチャを見つけます。
既存のNASアルゴリズムは、スクラッチから完全にトレーニングすることで、新しいアーキテクチャの適合性を評価する。
サンプルアーキテクチャの評価を高速化するために,エンドツーエンドのオフライン性能予測器を提案する。
論文 参考訳(メタデータ) (2021-08-04T05:44:16Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z) - LC-NAS: Latency Constrained Neural Architecture Search for Point Cloud
Networks [73.78551758828294]
LC-NASは、最小計算コストでポイントクラウド分類のための最先端アーキテクチャを見つけることができる。
検索したアーキテクチャが、適度に低い精度で、望ましいレイテンシを実現する方法を示します。
論文 参考訳(メタデータ) (2020-08-24T10:30:21Z) - Stage-Wise Neural Architecture Search [65.03109178056937]
ResNetやNASNetのような現代の畳み込みネットワークは、多くのコンピュータビジョンアプリケーションで最先端の結果を得た。
これらのネットワークは、同じ解像度で表現を操作するレイヤのセットであるステージで構成されている。
各ステージにおけるレイヤー数の増加はネットワークの予測能力を向上させることが示されている。
しかし、結果として得られるアーキテクチャは、浮動小数点演算、メモリ要求、推論時間の観点から計算的に高価になる。
論文 参考訳(メタデータ) (2020-04-23T14:16:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。