Metastable spin-phase diagrams in antiferromagnetic Bose-Einstein
condensates
- URL: http://arxiv.org/abs/2109.01986v1
- Date: Sun, 5 Sep 2021 03:47:59 GMT
- Title: Metastable spin-phase diagrams in antiferromagnetic Bose-Einstein
condensates
- Authors: E. Serrano-Ens\'astiga and F. Mireles
- Abstract summary: We study theoretically the metastable spin-phase diagram of a spin-1 antiferromagnetic Bose-Einstein condensate at zero and finite temperatures.
Results are consistent with recent experiments and allow us to explain qualitatively the different types of observed quench dynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spinor Bose-Einstein condensates under external magnetic fields exhibit
well-characterized spin domains of its ground state due to spin-dependent
interactions. At low temperatures, collision-induced spin-mixing instabilities
may promote the condensate to dwell into metastable states occurring near the
phase boundaries. In this work, we study theoretically the metastable
spin-phase diagram of a spin-1 antiferromagnetic Bose-Einstein condensate at
zero and finite temperatures. The approach makes use of Hartree-Fock theory and
exploits the symmetry of the Hamiltonian and of the order parameters yielding a
closed system of transcendental equations for the free energy, fully avoiding
the use of selfconsistency. Our results are consistent with recent experiments
and allow us to explain qualitatively the different types of observed quench
dynamics. In addition, we found that similar phenomena should occur in
antiferromagnetic spinor condensates with a sudden change in the temperature.
It is shown also that the increase of temperature induces a traceable shift of
the Ferromagnetic-Polar transition boundary, behavior previously not noticed by
selfconsistent mean-field calculations.
Related papers
- Spin entanglement in antiferromagnetic spin-1 Bose-Einstein condensates [0.0]
We study the spin entanglement in a spin-1 Bose-Einstein condensate with antiferromagnetic atomic interactions.
For the polar phase, being the phase that exhibits the highest degree of entanglement, we were able to identify a clear dependency on the spin-spin interactions and the Zeeman fields.
arXiv Detail & Related papers (2024-11-12T08:36:02Z) - Realizing Altermagnetism in Fermi-Hubbard Models with Ultracold Atoms [0.0]
We show how a d-wave altermagnetic phase can be realized with ultracold fermionic atoms in optical lattices.
One of the defining characteristics of altermagnetism, the anisotropic spin transport, can be probed with trap-expansion experiments.
arXiv Detail & Related papers (2023-12-15T19:01:20Z) - Quantum sensing via magnetic-noise-protected states in an electronic
spin dyad [0.0]
We investigate the coherent spin dynamics of a hetero-spin system formed by a spin S=1 featuring a non-zero crystal field.
We show that the zero-quantum coherences we create between them can be remarkably long-lived.
These spin dyads could be exploited as nanoscale gradiometers for precision magnetometry or as probes for magnetic-noise-free electrometry and thermal sensing.
arXiv Detail & Related papers (2023-06-29T19:27:17Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Feedback Induced Magnetic Phases in Binary Bose-Einstein Condensates [0.0]
We develop a theoretical toolbox for quantum feedback control of Bose-Einstein condensates.
Our result demonstrates that closed-loop quantum control of Bose-Einstein condensates is a powerful new tool for quantum engineering in cold-atom systems.
arXiv Detail & Related papers (2020-07-14T18:00:15Z) - Protecting Spin Coherence in a Tunable Heisenberg Model [0.0]
We study a family of nonlocal Heisenberg Hamiltonians with tunable anisotropy of the spin-spin couplings.
Images of the magnetization dynamics show that spin-exchange interactions protect the coherence of the collective spin.
arXiv Detail & Related papers (2020-03-13T02:36:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.