Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image
Super-resolution
- URL: http://arxiv.org/abs/2109.02079v1
- Date: Sun, 5 Sep 2021 14:00:34 GMT
- Title: Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image
Super-resolution
- Authors: Jin-Fan Hu and Ting-Zhu Huang and Liang-Jian Deng
- Abstract summary: We design a network based on the transformer for fusing the low-resolution hyperspectral images and high-resolution multispectral images.
Considering the LR-HSIs hold the main spectral structure, the network focuses on the spatial detail estimation.
Various experiments and quality indexes show our approach's superiority compared with other state-of-the-art methods.
- Score: 9.022005574190182
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral image has become increasingly crucial due to its abundant
spectral information. However, It has poor spatial resolution with the
limitation of the current imaging mechanism. Nowadays, many convolutional
neural networks have been proposed for the hyperspectral image super-resolution
problem. However, convolutional neural network (CNN) based methods only
consider the local information instead of the global one with the limited
kernel size of receptive field in the convolution operation. In this paper, we
design a network based on the transformer for fusing the low-resolution
hyperspectral images and high-resolution multispectral images to obtain the
high-resolution hyperspectral images. Thanks to the representing ability of the
transformer, our approach is able to explore the intrinsic relationships of
features globally. Furthermore, considering the LR-HSIs hold the main spectral
structure, the network focuses on the spatial detail estimation releasing from
the burden of reconstructing the whole data. It reduces the mapping space of
the proposed network, which enhances the final performance. Various experiments
and quality indexes show our approach's superiority compared with other
state-of-the-art methods.
Related papers
- Unsupervised Hyperspectral and Multispectral Image Blind Fusion Based on Deep Tucker Decomposition Network with Spatial-Spectral Manifold Learning [15.86617273658407]
We propose an unsupervised blind fusion method for hyperspectral and multispectral images based on Tucker decomposition and spatial spectral manifold learning (DTDNML)
We show that this method enhances the accuracy and efficiency of hyperspectral and multispectral fusion on different remote sensing datasets.
arXiv Detail & Related papers (2024-09-15T08:58:26Z) - CoT-MISR:Marrying Convolution and Transformer for Multi-Image
Super-Resolution [3.105999623265897]
How to transform a low-resolution image to restore its high-resolution image information is a problem that researchers have been exploring.
CoT-MISR network makes up for local and global information by using the advantages of convolution and tr.
arXiv Detail & Related papers (2023-03-12T03:01:29Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
This paper focuses on how to embed the high-dimensional spatial-spectral information of hyperspectral (HS) images efficiently and effectively.
We formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events.
Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable.
Experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-30T06:59:01Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - LocalTrans: A Multiscale Local Transformer Network for Cross-Resolution
Homography Estimation [52.63874513999119]
Cross-resolution image alignment is a key problem in multiscale giga photography.
Existing deep homography methods neglecting the explicit formulation of correspondences between them, which leads to degraded accuracy in cross-resolution challenges.
We propose a local transformer network embedded within a multiscale structure to explicitly learn correspondences between the multimodal inputs.
arXiv Detail & Related papers (2021-06-08T02:51:45Z) - Multi-image Super Resolution of Remotely Sensed Images using Residual
Feature Attention Deep Neural Networks [1.3764085113103222]
The presented research proposes a novel residual attention model (RAMS) that efficiently tackles the multi-image super-resolution task.
We introduce the mechanism of visual feature attention with 3D convolutions in order to obtain an aware data fusion and information extraction.
Our representation learning network makes extensive use of nestled residual connections to let flow redundant low-frequency signals.
arXiv Detail & Related papers (2020-07-06T22:54:02Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
Cross-modality distribution of spatial and spectral information makes the problem challenging.
We propose a novel textitlightweight deep neural network-based framework, namely PZRes-Net.
Our framework learns a high resolution and textitzero-centric residual image, which contains high-frequency spatial details of the scene.
arXiv Detail & Related papers (2020-06-18T06:32:11Z) - Hyperspectral Image Super-resolution via Deep Spatio-spectral
Convolutional Neural Networks [32.10057746890683]
We propose a simple and efficient architecture for deep convolutional neural networks to fuse a low-resolution hyperspectral image and a high-resolution multispectral image.
The proposed network architecture achieves best performance compared with recent state-of-the-art hyperspectral image super-resolution approaches.
arXiv Detail & Related papers (2020-05-29T05:56:50Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.