On Second-order Optimization Methods for Federated Learning
- URL: http://arxiv.org/abs/2109.02388v1
- Date: Mon, 6 Sep 2021 12:04:08 GMT
- Title: On Second-order Optimization Methods for Federated Learning
- Authors: Sebastian Bischoff, Stephan G\"unnemann, Martin Jaggi, Sebastian U.
Stich
- Abstract summary: We evaluate the performance of several second-order distributed methods with local steps in the federated learning setting.
We propose a novel variant that uses second-order local information for updates and a global line search to counteract the resulting local specificity.
- Score: 59.787198516188425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider federated learning (FL), where the training data is distributed
across a large number of clients. The standard optimization method in this
setting is Federated Averaging (FedAvg), which performs multiple local
first-order optimization steps between communication rounds. In this work, we
evaluate the performance of several second-order distributed methods with local
steps in the FL setting which promise to have favorable convergence properties.
We (i) show that FedAvg performs surprisingly well against its second-order
competitors when evaluated under fair metrics (equal amount of local
computations)-in contrast to the results of previous work. Based on our
numerical study, we propose (ii) a novel variant that uses second-order local
information for updates and a global line search to counteract the resulting
local specificity.
Related papers
- Aiding Global Convergence in Federated Learning via Local Perturbation and Mutual Similarity Information [6.767885381740953]
Federated learning has emerged as a distributed optimization paradigm.
We propose a novel modified framework wherein each client locally performs a perturbed gradient step.
We show that our algorithm speeds convergence up to a margin of 30 global rounds compared with FedAvg.
arXiv Detail & Related papers (2024-10-07T23:14:05Z) - Double-Bounded Optimal Transport for Advanced Clustering and
Classification [58.237576976486544]
We propose Doubly Bounded Optimal Transport (DB-OT), which assumes that the target distribution is restricted within two boundaries instead of a fixed one.
We show that our method can achieve good results with our improved inference scheme in the testing stage.
arXiv Detail & Related papers (2024-01-21T07:43:01Z) - Enhanced Federated Optimization: Adaptive Unbiased Client Sampling with Reduced Variance [37.646655530394604]
Federated Learning (FL) is a distributed learning paradigm to train a global model across multiple devices without collecting local data.
We present the first adaptive client sampler, K-Vib, employing an independent sampling procedure.
K-Vib achieves a linear speed-up on the regret bound $tildemathcalObig(Nfrac13Tfrac23/Kfrac43big)$ within a set communication budget.
arXiv Detail & Related papers (2023-10-04T10:08:01Z) - Preconditioned Federated Learning [7.7269332266153326]
Federated Learning (FL) is a distributed machine learning approach that enables model training in communication efficient and privacy-preserving manner.
FedAvg has been considered to lack algorithm adaptivity compared to modern first-order adaptive optimizations.
We propose new communication-efficient FL algortithms based on two adaptive frameworks: local adaptivity (PreFed) and server-side adaptivity (PreFedOp)
arXiv Detail & Related papers (2023-09-20T14:58:47Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - FOSI: Hybrid First and Second Order Optimization [11.447526245792154]
We present FOSI, a novel metaalgorithm that improves the performance of any base first-order by efficiently incorporating second-order information during the optimization process.
Our empirical evaluation demonstrates that FOSI improves the convergence rate and optimization time of first-order methods such as Heavy-Ball and Adam, and outperforms second-order methods (K-FAC and L-BFGS)
arXiv Detail & Related papers (2023-02-16T18:45:46Z) - Speeding up Heterogeneous Federated Learning with Sequentially Trained
Superclients [19.496278017418113]
Federated Learning (FL) allows training machine learning models in privacy-constrained scenarios by enabling the cooperation of edge devices without requiring local data sharing.
This approach raises several challenges due to the different statistical distribution of the local datasets and the clients' computational heterogeneity.
We propose FedSeq, a novel framework leveraging the sequential training of subgroups of heterogeneous clients, i.e. superclients, to emulate the centralized paradigm in a privacy-compliant way.
arXiv Detail & Related papers (2022-01-26T12:33:23Z) - Higher Performance Visual Tracking with Dual-Modal Localization [106.91097443275035]
Visual Object Tracking (VOT) has synchronous needs for both robustness and accuracy.
We propose a dual-modal framework for target localization, consisting of robust localization suppressingors via ONR and the accurate localization attending to the target center precisely via OFC.
arXiv Detail & Related papers (2021-03-18T08:47:56Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.