Preconditioned Federated Learning
- URL: http://arxiv.org/abs/2309.11378v1
- Date: Wed, 20 Sep 2023 14:58:47 GMT
- Title: Preconditioned Federated Learning
- Authors: Zeyi Tao, Jindi Wu, Qun Li
- Abstract summary: Federated Learning (FL) is a distributed machine learning approach that enables model training in communication efficient and privacy-preserving manner.
FedAvg has been considered to lack algorithm adaptivity compared to modern first-order adaptive optimizations.
We propose new communication-efficient FL algortithms based on two adaptive frameworks: local adaptivity (PreFed) and server-side adaptivity (PreFedOp)
- Score: 7.7269332266153326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a distributed machine learning approach that
enables model training in communication efficient and privacy-preserving
manner. The standard optimization method in FL is Federated Averaging (FedAvg),
which performs multiple local SGD steps between communication rounds. FedAvg
has been considered to lack algorithm adaptivity compared to modern first-order
adaptive optimizations. In this paper, we propose new communication-efficient
FL algortithms based on two adaptive frameworks: local adaptivity (PreFed) and
server-side adaptivity (PreFedOp). Proposed methods adopt adaptivity by using a
novel covariance matrix preconditioner. Theoretically, we provide convergence
guarantees for our algorithms. The empirical experiments show our methods
achieve state-of-the-art performances on both i.i.d. and non-i.i.d. settings.
Related papers
- FADAS: Towards Federated Adaptive Asynchronous Optimization [56.09666452175333]
Federated learning (FL) has emerged as a widely adopted training paradigm for privacy-preserving machine learning.
This paper introduces federated adaptive asynchronous optimization, named FADAS, a novel method that incorporates asynchronous updates into adaptive federated optimization with provable guarantees.
We rigorously establish the convergence rate of the proposed algorithms and empirical results demonstrate the superior performance of FADAS over other asynchronous FL baselines.
arXiv Detail & Related papers (2024-07-25T20:02:57Z) - FedDA: Faster Framework of Local Adaptive Gradient Methods via Restarted
Dual Averaging [104.41634756395545]
Federated learning (FL) is an emerging learning paradigm to tackle massively distributed data.
We propose textbfFedDA, a novel framework for local adaptive gradient methods.
We show that textbfFedDA-MVR is the first adaptive FL algorithm that achieves this rate.
arXiv Detail & Related papers (2023-02-13T05:10:30Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Accelerated Federated Learning with Decoupled Adaptive Optimization [53.230515878096426]
federated learning (FL) framework enables clients to collaboratively learn a shared model while keeping privacy of training data on clients.
Recently, many iterations efforts have been made to generalize centralized adaptive optimization methods, such as SGDM, Adam, AdaGrad, etc., to federated settings.
This work aims to develop novel adaptive optimization methods for FL from the perspective of dynamics of ordinary differential equations (ODEs)
arXiv Detail & Related papers (2022-07-14T22:46:43Z) - On Second-order Optimization Methods for Federated Learning [59.787198516188425]
We evaluate the performance of several second-order distributed methods with local steps in the federated learning setting.
We propose a novel variant that uses second-order local information for updates and a global line search to counteract the resulting local specificity.
arXiv Detail & Related papers (2021-09-06T12:04:08Z) - Local Adaptivity in Federated Learning: Convergence and Consistency [25.293584783673413]
Federated learning (FL) framework trains a machine learning model using decentralized data stored at edge client devices by periodically aggregating locally trained models.
We show in both theory and practice that while local adaptive methods can accelerate convergence, they can cause a non-vanishing solution bias.
We propose correction techniques to overcome this inconsistency and complement the local adaptive methods for FL.
arXiv Detail & Related papers (2021-06-04T07:36:59Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.