論文の概要: Active Learning for Automated Visual Inspection of Manufactured Products
- arxiv url: http://arxiv.org/abs/2109.02469v1
- Date: Mon, 6 Sep 2021 13:44:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-07 17:01:30.510832
- Title: Active Learning for Automated Visual Inspection of Manufactured Products
- Title(参考訳): 生産品の自動視覚検査のためのアクティブラーニング
- Authors: Elena Trajkova, Jo\v{z}e M. Ro\v{z}anec, Paulien Dam, Bla\v{z}
Fortuna, Dunja Mladeni\'c
- Abstract要約: 実世界のデータを用いた視覚的欠陥検査に応用した3つのアクティブな学習手法と5つの機械学習アルゴリズムを比較した。
その結果,アクティブラーニングは,モデルの性能を損なうことなく,データラベリングの労力を削減できることが示唆された。
- 参考スコア(独自算出の注目度): 0.6299766708197884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quality control is a key activity performed by manufacturing enterprises to
ensure products meet quality standards and avoid potential damage to the
brand's reputation. The decreased cost of sensors and connectivity enabled an
increasing digitalization of manufacturing. In addition, artificial
intelligence enables higher degrees of automation, reducing overall costs and
time required for defect inspection. In this research, we compare three active
learning approaches and five machine learning algorithms applied to visual
defect inspection with real-world data provided by Philips Consumer Lifestyle
BV. Our results show that active learning reduces the data labeling effort
without detriment to the models' performance.
- Abstract(参考訳): 品質管理は、製品が品質基準を満たし、ブランドの評判に潜在的なダメージを避けるために、製造業が行う重要な活動である。
センサーと接続のコストの削減により、製造のデジタル化が進んだ。
さらに、人工知能はより高度な自動化を可能にし、欠陥検査に必要な全体的なコストと時間を削減する。
本研究では,3つのアクティブラーニング手法と5つの機械学習アルゴリズムを,philips consumer lifestyle bvによる実世界データと比較した。
その結果,アクティブラーニングはモデルの性能を損なうことなくデータラベリングの労力を削減できることがわかった。
関連論文リスト
- A Systematic Review of Available Datasets in Additive Manufacturing [56.684125592242445]
視覚およびその他のセンサー技術を組み込んだその場監視により、追加製造プロセス中に広範なデータセットの収集が可能になる。
これらのデータセットは、製造された出力の品質を判断し、機械学習を使用して欠陥を検出する可能性がある。
本稿では,AMプロセスから派生したオープン画像ベースデータセットの利用可能性について検討する。
論文 参考訳(メタデータ) (2024-01-27T16:13:32Z) - DeepInspect: An AI-Powered Defect Detection for Manufacturing Industries [0.0]
この技術は、製品写真から複雑な詳細を抽出することによって、欠陥を正確に識別する。
このプロジェクトでは、ディープラーニングフレームワークを活用して、製造プロセスにおけるリアルタイムな欠陥検出を自動化する。
論文 参考訳(メタデータ) (2023-11-07T04:59:43Z) - Autoencoder-Based Visual Anomaly Localization for Manufacturing Quality
Control [0.0]
本稿では,教師なしクラス選択による欠陥ローカライズオートエンコーダを提案する。
選択された欠陥のクラスは、人工的な欠陥をシミュレートするために天然の野生のテクスチャで強化される。
提案手法は, 家具用メラミン面板における品質欠陥の高精度かつ高精度な位置決めを行うことで, 有望な結果を示すものである。
論文 参考訳(メタデータ) (2023-09-13T11:18:15Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
本稿では、まず、畳み込みニューラルネットワーク(CNN)を用いて、画像データセットの欠陥をAMから第2に正確に分類し、発達した分類モデルにアクティブラーニング技術を適用する。
これにより、トレーニングデータやトレーニングデータの生成に必要なデータのサイズを削減できる、ヒューマン・イン・ザ・ループ機構の構築が可能になる。
論文 参考訳(メタデータ) (2023-07-14T14:36:58Z) - Synthetic Data Augmentation Using GAN For Improved Automated Visual
Inspection [0.440401067183266]
最先端の教師なし欠陥検出は教師付きモデルの性能と一致しない。
AUC ROCスコアが 0,9898 以上である GAN ベースのデータ生成を考慮し, 最高の分類性能が得られた。
論文 参考訳(メタデータ) (2022-12-19T09:31:15Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
AIモデルの開発に欠かせない役割にもかかわらず、アクティブラーニングの研究は他の研究の方向性ほど集中的ではない。
データ自動化の課題に対処し、自動化された機械学習システムに対処することによって、アクティブな学習はAI技術の民主化を促進する。
論文 参考訳(メタデータ) (2022-11-27T13:07:14Z) - Active Learning and Approximate Model Calibration for Automated Visual
Inspection in Manufacturing [0.415623340386296]
本研究は,3つの積極的学習アプローチ(単一と複数オーラクル)と視覚検査を比較した。
本稿では,分類モデルの確率キャリブレーションに対する新しいアプローチと,基礎的真理を必要とせずにキャリブレーションの性能を評価するための2つの新しい指標を提案する。
論文 参考訳(メタデータ) (2022-09-12T15:00:29Z) - Don't Start From Scratch: Leveraging Prior Data to Automate Robotic
Reinforcement Learning [70.70104870417784]
強化学習(RL)アルゴリズムは、ロボットシステムの自律的なスキル獲得を可能にするという約束を持っている。
現実のロボットRLは、通常、環境をリセットするためにデータ収集と頻繁な人間の介入を必要とする。
本研究では,従来のタスクから収集した多様なオフラインデータセットを効果的に活用することで,これらの課題にどのように対処できるかを検討する。
論文 参考訳(メタデータ) (2022-07-11T08:31:22Z) - Streaming Machine Learning and Online Active Learning for Automated
Visual Inspection [0.6299766708197884]
我々は,Philips Consumer Lifestyle BVが提供する実世界のデータと,視覚的欠陥検査に適用された5つのストリーミング機械学習アルゴリズムを比較した。
以上の結果から,アクティブラーニングがデータラベリングの労力を,最悪の場合平均で約15%削減できることが示唆された。
自動視覚検査に機械学習モデルを使用することで、品質検査を最大40%高速化することが期待されている。
論文 参考訳(メタデータ) (2021-10-15T09:39:04Z) - Distantly-Supervised Named Entity Recognition with Noise-Robust Learning
and Language Model Augmented Self-Training [66.80558875393565]
遠距離ラベル付きデータのみを用いて、名前付きエンティティ認識(NER)モデルを訓練する際の課題について検討する。
本稿では,新しい損失関数と雑音ラベル除去ステップからなるノイズロスバスト学習手法を提案する。
提案手法は,既存の遠隔教師付きNERモデルよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2021-09-10T17:19:56Z) - Detecting Faults during Automatic Screwdriving: A Dataset and Use Case
of Anomaly Detection for Automatic Screwdriving [80.6725125503521]
障害検出に機械学習(ML)を使用したデータ駆動型アプローチが最近注目されている。
本稿では,自動スクリュー運転時の故障検出にMLモデルを用いた場合について述べる。
論文 参考訳(メタデータ) (2021-07-05T11:46:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。