論文の概要: Online Learning of Independent Cascade Models with Node-level Feedback
- arxiv url: http://arxiv.org/abs/2109.02519v1
- Date: Mon, 6 Sep 2021 14:51:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-07 16:23:50.941025
- Title: Online Learning of Independent Cascade Models with Node-level Feedback
- Title(参考訳): ノードレベルフィードバックを用いた独立カスケードモデルのオンライン学習
- Authors: Shuoguang Yang, Van-Anh Truong
- Abstract要約: 本稿では,ノードレベルのフィードバック下での独立カスケードモデルに対するオンライン学習問題の最初の解析法を提案する。
既存のICモデルの作業は、エージェントが観測されたすべてのエッジの明確な結果を知っているエッジレベルのフィードバックモデルにのみ光を当てている。
我々は,ICモデルに対する理論的後悔とエッジレベルのフィードバックとを一致させて,$mathcalO( sqrtT)$の累積後悔を実現するオンラインアルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose the first analysis of the online-learning problem for Independent
Cascade (IC) models under node-level feedback. These models have widespread
applications in modern social networks. Existing works for IC models have only
shed light on edge-level feedback models, where the agent knows the explicit
outcome of every observed edge. Little is known about node-level feedback
models, where only combined outcomes for sets of edges are observed; in other
words, the realization of each edge is censored. This censored information,
together with the nonlinear form of the aggregated influence probability, make
both parameter estimation and algorithm design challenging. We establish the
first confidence-region result under this setting. We also develop an online
algorithm achieving a cumulative regret of $\mathcal{O}( \sqrt{T})$, matching
the theoretical regret bound for IC models with edge-level feedback.
- Abstract(参考訳): 本稿では,ノードレベルのフィードバック下での独立カスケードモデルに対するオンライン学習問題の最初の解析法を提案する。
これらのモデルは現代のソーシャルネットワークに広く応用されている。
既存のICモデルの作業は、エージェントが観測されたすべてのエッジの明確な結果を知っているエッジレベルのフィードバックモデルにのみ光を当てている。
ノードレベルのフィードバックモデルについてはほとんど知られていないが、エッジの集合に対する結果の組み合わせのみが観察される。
この検閲された情報は、集約された影響確率の非線形形式とともに、パラメータ推定とアルゴリズム設計の両方を困難にする。
この設定で、信頼領域の最初の結果を確立する。
また,ICモデルに対する理論的後悔境界とエッジレベルのフィードバックとを一致させて,$\mathcal{O}( \sqrt{T})$の累積後悔を実現するオンラインアルゴリズムを開発した。
関連論文リスト
- The Edge-of-Reach Problem in Offline Model-Based Reinforcement Learning [37.387280102209274]
オフライン強化学習は、事前に収集されたデータセットからエージェントをトレーニング可能にすることを目的としている。
モデルベースの手法は、エージェントが学習されたダイナミックスモデルでロールアウトを介して追加の合成データを収集できるようにすることで、ソリューションを提供する。
しかし、学習したダイナミックスモデルを真のエラーフリーなダイナミックスに置き換えると、既存のモデルベースのメソッドは完全に失敗する。
本稿では, エッジ・オブ・リーチ問題に直接対処する単純で堅牢な手法であるReach-Aware Value Learning (RAVL)を提案する。
論文 参考訳(メタデータ) (2024-02-19T20:38:00Z) - Layer-wise Linear Mode Connectivity [52.6945036534469]
ニューラルネットワークパラメータの平均化は、2つの独立したモデルの知識の直感的な方法である。
フェデレートラーニングにおいて最も顕著に用いられている。
私たちは、単一グループやグループを平均化するモデルの性能を分析します。
論文 参考訳(メタデータ) (2023-07-13T09:39:10Z) - Structure Learning and Parameter Estimation for Graphical Models via
Penalized Maximum Likelihood Methods [0.0]
論文では、静的なベイジアンネットワーク(BN)と、その名前が示すように時間成分を持つ連続時間ベイジアンネットワークという2つの異なるタイプのPGMについて考察する。
私たちは、PGMを学ぶための最初のステップである、真の構造を回復することに興味を持っています。
論文 参考訳(メタデータ) (2023-01-30T20:26:13Z) - Git Re-Basin: Merging Models modulo Permutation Symmetries [3.5450828190071655]
提案手法は,大規模ネットワークに適合する簡単なアルゴリズムを実例で示す。
我々は、独立に訓練されたモデル間のゼロモード接続の最初のデモ(私たちの知る限り)を実演する。
また、線形モード接続仮説の欠点についても論じる。
論文 参考訳(メタデータ) (2022-09-11T10:44:27Z) - Interpretations Steered Network Pruning via Amortized Inferred Saliency
Maps [85.49020931411825]
限られたリソースを持つエッジデバイスにこれらのモデルをデプロイするには、畳み込みニューラルネットワーク(CNN)圧縮が不可欠である。
本稿では,新しい視点からチャネルプルーニング問題に対処するために,モデルの解釈を活用して,プルーニング過程を解析する手法を提案する。
本研究では,実時間スムーズなスムーズなスムーズなスムーズなマスク予測を行うセレクタモデルを導入することで,この問題に対処する。
論文 参考訳(メタデータ) (2022-09-07T01:12:11Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
オフライン強化学習アプローチは、近近法と不確実性認識法に分けられる。
本研究では,この2つを潜在変動モデルに組み合わせることのメリットを実証する。
提案したメトリクスは、分布サンプルのアウトの品質と、データ内のサンプルの不一致の両方を測定します。
論文 参考訳(メタデータ) (2021-02-22T19:42:40Z) - Fast and Robust Cascade Model for Multiple Degradation Single Image
Super-Resolution [2.1574781022415364]
SISR(Single Image Super-Resolution)は、近年注目されている低レベルのコンピュータビジョン問題の一つである。
本稿では、畳み込みニューラルネットワーク(CNN)のカスケードモデルについて、新しい定式化を提案する。
外部知識を用いて各サブモジュールの出力を制限することで,より密結合なCNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-11-16T18:59:49Z) - Online Influence Maximization under Linear Threshold Model [17.06633823730587]
オンライン・インフルエンス(OIM)は、影響力伝達モデルパラメータを学習するソーシャル・ネットワークにおいて一般的な問題である。
本稿では,線形しきい値(LT)モデルでOIMに対処する。
群観察変調された性質滑らか性(GOM)を証明することにより、次数 $tildeO(mathrmpoly(m)sqrtT)$ を後悔する。
また,モデルに依存しない,O(mathrmpoly(m) T2/3)$という残差を持つOIM-ETCアルゴリズムも提供する。
論文 参考訳(メタデータ) (2020-11-12T13:41:37Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
モデルのトレーニング速度の測定値を用いて,その限界確率を推定できることを示す。
線形モデルと深部ニューラルネットワークの無限幅限界に対するモデル選択タスクの結果を検証する。
以上の結果から、勾配勾配勾配で訓練されたニューラルネットワークが、一般化する関数に偏りがある理由を説明するための、有望な新たな方向性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T17:56:14Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
過度にパラメータ化された多層ネットワーク上の勾配勾配は、RKHSノルムではないリッチな暗黙バイアスを誘発できることを示す。
また、より複雑な行列分解モデルと多層非線形ネットワークに対して、この遷移を実証的に示す。
論文 参考訳(メタデータ) (2020-02-20T15:43:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。