Application of Bootstrap to $\theta$-term
- URL: http://arxiv.org/abs/2109.02701v3
- Date: Sun, 22 May 2022 14:16:11 GMT
- Title: Application of Bootstrap to $\theta$-term
- Authors: Yu Aikawa, Takeshi Morita, Kota Yoshimura
- Abstract summary: We study quantum mechanics of a charged particle on a circle in which a constant gauge potential is a counterpart of a $theta$-term.
It is hard to determine physical quantities as functions of $theta$ such as $E(theta)$, except at $theta=0$ and $pi$.
Our results suggest that the bootstrap method may work not perfectly but sufficiently well, even if a $theta$-term exists in the system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, novel numerical computation on quantum mechanics by using a
bootstrap method was proposed by Han, Hartnoll, and Kruthoff. We consider
whether this method works in systems with a $\theta$-term, where the standard
Monte-Carlo computation may fail due to the sign problem. As a starting point,
we study quantum mechanics of a charged particle on a circle in which a
constant gauge potential is a counterpart of a $\theta$-term. We find that it
is hard to determine physical quantities as functions of $\theta$ such as
$E(\theta)$, except at $\theta=0$ and $\pi$. On the other hand, the
correlations among observables for energy eigenstates are correctly reproduced
for any $\theta$. Our results suggest that the bootstrap method may work not
perfectly but sufficiently well, even if a $\theta$-term exists in the system.
Related papers
- Bootstrapping periodic quantum systems [2.918792162258219]
We develop a new bootstrap procedure to resolve one-body periodic problems.<n>We first consider a quantum particle in a periodic cosine potential.<n>We then introduce a set of differential equations for $langleeinx eiap psrangle$ in the translation parameter $a$.
arXiv Detail & Related papers (2025-07-03T07:30:24Z) - Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Hamiltonian simulation for low-energy states with optimal time dependence [45.02537589779136]
We consider the task of simulating time evolution under a Hamiltonian $H$ within its low-energy subspace.
We present a quantum algorithm that uses $O(tsqrtlambdaGamma + sqrtlambda/Gammalog (1/epsilon))$ queries to the block-encoding for any $Gamma$.
arXiv Detail & Related papers (2024-04-04T17:58:01Z) - The $φ^n$ trajectory bootstrap [1.8855270809505869]
We show that the non-integer $n$ results for $langlephinrangle$ or $langle(iphi)nrangle$ are consistent with those from the wave function approach.
In the $mathcalPT$ invariant case, the existence of $langle(iphi)nrangle$ with non-integer $n$ allows us to bootstrap the non-Hermitian theories with non-integer powers.
arXiv Detail & Related papers (2024-02-08T16:09:06Z) - Quantum mechanical bootstrap on the interval: obtaining the exact
spectrum [0.0]
We show that for a particular model, the quantum mechanical bootstrap is capable of finding exact results.
We consider a solvable system with Hamiltonian $H=SZ (1-Z)S$, where $Z$ and $S$ satisfy canonical commutation relations.
arXiv Detail & Related papers (2024-02-05T19:00:02Z) - The role of shared randomness in quantum state certification with
unentangled measurements [36.19846254657676]
We study quantum state certification using unentangled quantum measurements.
$Theta(d2/varepsilon2)$ copies are necessary and sufficient for state certification.
We develop a unified lower bound framework for both fixed and randomized measurements.
arXiv Detail & Related papers (2024-01-17T23:44:52Z) - Universal contributions to charge fluctuations in spin chains at finite
temperature [5.174839433707792]
We show that $gamma(theta)$ only takes non-zero values at isolated points of $theta$, which is $theta=pi$ for all our examples.
In two exemplary lattice systems we show that $gamma(pi)$ takes quantized values when the U(1) symmetry exhibits a specific type of 't Hooft anomaly with other symmetries.
arXiv Detail & Related papers (2024-01-17T19:05:07Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Taming Dyson-Schwinger equations with null states [0.913755431537592]
In quantum field theory, the Dyson-Schwinger equations are an infinite set of equations relating $n$-point Green's functions in a self-consistent manner.
One of the main problems is that a finite truncation of the infinite system is underdetermined.
In this paper, we propose another avenue in light of the null bootstrap.
arXiv Detail & Related papers (2023-03-20T10:04:43Z) - Quantum Metropolis-Hastings algorithm with the target distribution
calculated by quantum Monte Carlo integration [0.0]
Quantum algorithms for MCMC have been proposed, yielding the quadratic speedup with respect to the spectral gap $Delta$ compered to classical counterparts.
We consider not only state generation but also finding a credible interval for a parameter, a common task in Bayesian inference.
In the proposed method for credible interval calculation, the number of queries to the quantum circuit to compute $ell$ scales on $Delta$, the required accuracy $epsilon$ and the standard deviation $sigma$ of $ell$ as $tildeO(sigma/epsilon
arXiv Detail & Related papers (2023-03-10T01:05:16Z) - Quantum and classical low-degree learning via a dimension-free Remez
inequality [52.12931955662553]
We show a new way to relate functions on the hypergrid to their harmonic extensions over the polytorus.
We show the supremum of a function $f$ over products of the cyclic group $exp(2pi i k/K)_k=1K$.
We extend to new spaces a recent line of work citeEI22, CHP, VZ22 that gave similarly efficient methods for learning low-degrees on hypercubes and observables on qubits.
arXiv Detail & Related papers (2023-01-04T04:15:40Z) - On quantum algorithms for the Schr\"odinger equation in the
semi-classical regime [27.175719898694073]
We consider Schr"odinger's equation in the semi-classical regime.
Such a Schr"odinger equation finds many applications, including in Born-Oppenheimer molecular dynamics and Ehrenfest dynamics.
arXiv Detail & Related papers (2021-12-25T20:01:54Z) - Uncertainties in Quantum Measurements: A Quantum Tomography [52.77024349608834]
The observables associated with a quantum system $S$ form a non-commutative algebra $mathcal A_S$.
It is assumed that a density matrix $rho$ can be determined from the expectation values of observables.
Abelian algebras do not have inner automorphisms, so the measurement apparatus can determine mean values of observables.
arXiv Detail & Related papers (2021-12-14T16:29:53Z) - Quantum double aspects of surface code models [77.34726150561087]
We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry.
We show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$.
arXiv Detail & Related papers (2021-06-25T17:03:38Z) - Simplest non-additive measures of quantum resources [77.34726150561087]
We study measures that can be described by $cal E(rhootimes N) =E(e;N) ne Ne$.
arXiv Detail & Related papers (2021-06-23T20:27:04Z) - Mapping the charge-dyon system into the position-dependent effective
mass background via Pauli equation [77.34726150561087]
This work aims to reproduce a quantum system composed of a charged spin - $1/2$ fermion interacting with a dyon with an opposite electrical charge.
arXiv Detail & Related papers (2020-11-01T14:38:34Z) - Quantum Coupon Collector [62.58209964224025]
We study how efficiently a $k$-element set $Ssubseteq[n]$ can be learned from a uniform superposition $|Srangle of its elements.
We give tight bounds on the number of quantum samples needed for every $k$ and $n$, and we give efficient quantum learning algorithms.
arXiv Detail & Related papers (2020-02-18T16:14:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.