The role of shared randomness in quantum state certification with
unentangled measurements
- URL: http://arxiv.org/abs/2401.09650v1
- Date: Wed, 17 Jan 2024 23:44:52 GMT
- Title: The role of shared randomness in quantum state certification with
unentangled measurements
- Authors: Yuhan Liu, Jayadev Acharya
- Abstract summary: We study quantum state certification using unentangled quantum measurements.
$Theta(d2/varepsilon2)$ copies are necessary and sufficient for state certification.
We develop a unified lower bound framework for both fixed and randomized measurements.
- Score: 36.19846254657676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given $n$ copies of an unknown quantum state $\rho\in\mathbb{C}^{d\times d}$,
quantum state certification is the task of determining whether $\rho=\rho_0$ or
$\|\rho-\rho_0\|_1>\varepsilon$, where $\rho_0$ is a known reference state. We
study quantum state certification using unentangled quantum measurements,
namely measurements which operate only on one copy of $\rho$ at a time. When
there is a common source of shared randomness available and the unentangled
measurements are chosen based on this randomness, prior work has shown that
$\Theta(d^{3/2}/\varepsilon^2)$ copies are necessary and sufficient. This holds
even when the measurements are allowed to be chosen adaptively. We consider
deterministic measurement schemes (as opposed to randomized) and demonstrate
that ${\Theta}(d^2/\varepsilon^2)$ copies are necessary and sufficient for
state certification. This shows a separation between algorithms with and
without shared randomness.
We develop a unified lower bound framework for both fixed and randomized
measurements, under the same theoretical framework that relates the hardness of
testing to the well-established L\"uders rule. More precisely, we obtain lower
bounds for randomized and fixed schemes as a function of the eigenvalues of the
L\"uders channel which characterizes one possible post-measurement state
transformation.
Related papers
- Quantum state testing with restricted measurements [30.641152457827527]
We develop an information-theoretic framework that yields unified copy complexity lower bounds for restricted families of non-adaptive measurements.
We demonstrate a separation between these two schemes, showing the power of randomized measurement schemes over fixed ones.
arXiv Detail & Related papers (2024-08-30T17:48:00Z) - Theory of free fermions under random projective measurements [43.04146484262759]
We develop an analytical approach to the study of one-dimensional free fermions subject to random projective measurements of local site occupation numbers.
We derive a non-linear sigma model (NLSM) as an effective field theory of the problem.
arXiv Detail & Related papers (2023-04-06T15:19:33Z) - Quantum Approximation of Normalized Schatten Norms and Applications to
Learning [0.0]
This paper addresses the problem of defining a similarity measure for quantum operations that can be textitefficiently estimated
We develop a quantum sampling circuit to estimate the normalized Schatten 2-norm of their difference and prove a Poly$(frac1epsilon)$ upper bound on the sample complexity.
We then show that such a similarity metric is directly related to a functional definition of similarity of unitary operations using the conventional fidelity metric of quantum states.
arXiv Detail & Related papers (2022-06-23T07:12:10Z) - Tight Bounds for Quantum State Certification with Incoherent
Measurements [18.566266990940374]
When $sigma$ is the maximally mixed state $frac1d I_d$, this is known as mixedness testing.
We focus on algorithms which use incoherent measurements, i.e. which only measure one copy of $rho$ at a time.
arXiv Detail & Related papers (2022-04-14T17:59:31Z) - Distributed quantum inner product estimation [14.222887950206658]
A benchmarking task known as cross-platform verification has been proposed that aims to estimate the fidelity of states prepared on two quantum computers.
No quantum communication can be performed between the two physical platforms due to hardware constraints.
We show that the sample complexity must be at least $Omega(max1/varepsilon2,sqrtd/varepsilon)$, even in the strongest setting.
arXiv Detail & Related papers (2021-11-05T05:35:03Z) - Stochastic behavior of outcome of Schur-Weyl duality measurement [45.41082277680607]
We focus on the measurement defined by the decomposition based on Schur-Weyl duality on $n$ qubits.
We derive various types of distribution including a kind of central limit when $n$ goes to infinity.
arXiv Detail & Related papers (2021-04-26T15:03:08Z) - Quantum data hiding with continuous variable systems [8.37609145576126]
We investigate data hiding in the context of continuous variable quantum systems.
We look at the case where $mathcalM=mathrmLOCC$, the set of measurements implementable with local operations and classical communication.
We perform a rigorous quantitative analysis of the error introduced by the non-ideal Braunstein-Kimble quantum teleportation protocol.
arXiv Detail & Related papers (2021-02-01T19:00:14Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
Universal quantum computing with continuous variables requires non-Gaussian resources.
The cubic phase state is a non-Gaussian state whose experimental implementation has so far remained elusive.
We introduce two protocols that allow for the conversion of a non-Gaussian state to a cubic phase state.
arXiv Detail & Related papers (2020-07-07T09:19:49Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.