論文の概要: Large-Scale System Identification Using a Randomized SVD
- arxiv url: http://arxiv.org/abs/2109.02703v1
- Date: Mon, 6 Sep 2021 19:25:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-09 03:07:32.480633
- Title: Large-Scale System Identification Using a Randomized SVD
- Title(参考訳): ランダム化SVDを用いた大規模システム同定
- Authors: Han Wang and James Anderson
- Abstract要約: 近似行列因数分解は、実現アルゴリズムにおける標準SVDを置き換えることができることを示す。
これはモデルを作ることができる唯一の方法です。
- 参考スコア(独自算出の注目度): 4.567810220723372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning a dynamical system from input/output data is a fundamental task in
the control design pipeline. In the partially observed setting there are two
components to identification: parameter estimation to learn the Markov
parameters, and system realization to obtain a state space model. In both
sub-problems it is implicitly assumed that standard numerical algorithms such
as the singular value decomposition (SVD) can be easily and reliably computed.
When trying to fit a high-dimensional model to data, for example in the
cyber-physical system setting, even computing an SVD is intractable. In this
work we show that an approximate matrix factorization obtained using randomized
methods can replace the standard SVD in the realization algorithm while
maintaining the non-asymptotic (in data-set size) performance and robustness
guarantees of classical methods. Numerical examples illustrate that for large
system models, this is the only method capable of producing a model.
- Abstract(参考訳): 入出力データから動的システムを学ぶことは、制御設計パイプラインの基本課題である。
部分的に観察された設定では、マルコフパラメータを学習するためのパラメータ推定と状態空間モデルを得るためのシステム実現の2つのコンポーネントが識別される。
両方のサブプロブレムにおいて、特異値分解(SVD)のような標準的な数値アルゴリズムは容易にかつ確実に計算できると暗黙的に仮定する。
例えばサイバー物理システムの設定では、高次元のモデルをデータに適用しようとすると、SVDの計算も難解である。
本研究では,従来の手法の非漸近的(データセットサイズ)性能とロバスト性保証を維持しつつ,ランダム化手法を用いて得られた近似行列分解により,実現アルゴリズムの標準SVDを置き換えることができることを示す。
数値例は、大規模システムモデルでは、モデルを生成する唯一の方法であることを示している。
関連論文リスト
- Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Cost-sensitive probabilistic predictions for support vector machines [1.743685428161914]
サポートベクターマシン(SVM)は広く使われており、最もよく検討され使用されている機械学習モデルの一つである。
本稿では,SVMの確率的出力を生成する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-09T11:00:17Z) - Numerical Optimizations for Weighted Low-rank Estimation on Language
Model [73.12941276331316]
Singular value decomposition (SVD) は、より小さい行列でターゲット行列を近似する最も一般的な圧縮手法の1つである。
標準SVDは行列内のパラメータを同じ重要性で扱うが、これは単純だが非現実的な仮定である。
本手法は,ニューラルベース言語モデルにおいて,現在のSOTA法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-02T00:58:02Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
誘導点に基づくスケーラブルスパース近似の数値安定性について検討する。
地理空間モデリングなどの低次元タスクに対しては,これらの条件を満たす点を自動計算する手法を提案する。
論文 参考訳(メタデータ) (2022-10-14T15:20:17Z) - Deep learning-enhanced ensemble-based data assimilation for
high-dimensional nonlinear dynamical systems [0.0]
Ensemble Kalman filter (EnKF) は高次元非線形力学系を含むアプリケーションで広く使われているDAアルゴリズムである。
本研究では,二層型擬似地栄養流システムに適用可能なハイブリッドアンサンブルカルマンフィルタ (H-EnKF) を提案する。
論文 参考訳(メタデータ) (2022-06-09T23:34:49Z) - Distributed Dynamic Safe Screening Algorithms for Sparse Regularization [73.85961005970222]
本稿では,分散動的安全スクリーニング(DDSS)手法を提案し,共有メモリアーキテクチャと分散メモリアーキテクチャにそれぞれ適用する。
提案手法は, 線形収束率を低次複雑度で達成し, 有限個の繰り返しにおいてほとんどすべての不活性な特徴をほぼ確実に除去できることを示す。
論文 参考訳(メタデータ) (2022-04-23T02:45:55Z) - Tensor Network Kalman Filtering for Large-Scale LS-SVMs [17.36231167296782]
最小二乗支援ベクトルマシンは非線形回帰と分類に使用される。
テンソルネットワークとカルマンフィルタに基づくフレームワークは、要求されるメモリと計算の複雑さを軽減する。
その結果,提案手法は高い性能を達成でき,代替手法が計算能力に欠ける場合には特に有用であることがわかった。
論文 参考訳(メタデータ) (2021-10-26T08:54:03Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
システム記述における不確実性定量化(UQ)のための多様体学習に基づく手法を提案する。
提案手法は高精度な近似を達成でき、UQタスクの大幅な高速化につながる。
論文 参考訳(メタデータ) (2021-07-21T00:24:15Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。