Improving Dietary Assessment Via Integrated Hierarchy Food
Classification
- URL: http://arxiv.org/abs/2109.02736v1
- Date: Mon, 6 Sep 2021 20:59:58 GMT
- Title: Improving Dietary Assessment Via Integrated Hierarchy Food
Classification
- Authors: Runyu Mao, Jiangpeng He, Luotao Lin, Zeman Shao, Heather A.
Eicher-Miller and Fengqing Zhu
- Abstract summary: We introduce a new food classification framework to improve the quality of predictions by integrating the information from multiple domains.
Our method is validated on the modified VIPER-FoodNet (VFN) food image dataset by including associated energy and nutrient information.
- Score: 7.398060062678395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-based dietary assessment refers to the process of determining what
someone eats and how much energy and nutrients are consumed from visual data.
Food classification is the first and most crucial step. Existing methods focus
on improving accuracy measured by the rate of correct classification based on
visual information alone, which is very challenging due to the high complexity
and inter-class similarity of foods. Further, accuracy in food classification
is conceptual as description of a food can always be improved. In this work, we
introduce a new food classification framework to improve the quality of
predictions by integrating the information from multiple domains while
maintaining the classification accuracy. We apply a multi-task network based on
a hierarchical structure that uses both visual and nutrition domain specific
information to cluster similar foods. Our method is validated on the modified
VIPER-FoodNet (VFN) food image dataset by including associated energy and
nutrient information. We achieve comparable classification accuracy with
existing methods that use visual information only, but with less error in terms
of energy and nutrient values for the wrong predictions.
Related papers
- NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
Self-reporting methods are often inaccurate and suffer from substantial bias.
Recent work has explored using computer vision prediction systems to predict nutritional information from food images.
This paper aims to enhance the efficacy of dietary intake estimation by leveraging various neural network architectures.
arXiv Detail & Related papers (2024-05-13T14:56:55Z) - NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches [59.38343165508926]
Accurate dietary intake estimation is critical for informing policies and programs to support healthy eating.
Recent work has focused on using computer vision and machine learning to automatically estimate dietary intake from food images.
We introduce NutritionVerse- Synth, the first large-scale dataset of 84,984 synthetic 2D food images with associated dietary information.
We also collect a real image dataset, NutritionVerse-Real, containing 889 images of 251 dishes to evaluate realism.
arXiv Detail & Related papers (2023-09-14T13:29:41Z) - Muti-Stage Hierarchical Food Classification [9.013592803864086]
We propose a multi-stage hierarchical framework for food item classification by iteratively clustering and merging food items during the training process.
Our method is evaluated on VFN-nutrient dataset and achieve promising results compared with existing work in terms of both food type and food item classification.
arXiv Detail & Related papers (2023-09-03T04:45:44Z) - Transferring Knowledge for Food Image Segmentation using Transformers
and Convolutions [65.50975507723827]
Food image segmentation is an important task that has ubiquitous applications, such as estimating the nutritional value of a plate of food.
One challenge is that food items can overlap and mix, making them difficult to distinguish.
Two models are trained and compared, one based on convolutional neural networks and the other on Bidirectional representation for Image Transformers (BEiT)
The BEiT model outperforms the previous state-of-the-art model by achieving a mean intersection over union of 49.4 on FoodSeg103.
arXiv Detail & Related papers (2023-06-15T15:38:10Z) - Towards the Creation of a Nutrition and Food Group Based Image Database [58.429385707376554]
We propose a framework to create a nutrition and food group based image database.
We design a protocol for linking food group based food codes in the U.S. Department of Agriculture's (USDA) Food and Nutrient Database for Dietary Studies (FNDDS)
Our proposed method is used to build a nutrition and food group based image database including 16,114 food datasets.
arXiv Detail & Related papers (2022-06-05T02:41:44Z) - Towards Building a Food Knowledge Graph for Internet of Food [66.57235827087092]
We review the evolution of food knowledge organization, from food classification to food to food knowledge graphs.
Food knowledge graphs play an important role in food search and Question Answering (QA), personalized dietary recommendation, food analysis and visualization.
Future directions for food knowledge graphs cover several fields such as multimodal food knowledge graphs and food intelligence.
arXiv Detail & Related papers (2021-07-13T06:26:53Z) - Visual Aware Hierarchy Based Food Recognition [10.194167945992938]
We propose a new two-step food recognition system using Convolutional Neural Networks (CNNs) as the backbone architecture.
The food localization step is based on an implementation of the Faster R-CNN method to identify food regions.
In the food classification step, visually similar food categories can be clustered together automatically to generate a hierarchical structure.
arXiv Detail & Related papers (2020-12-06T20:25:31Z) - Multi-Task Image-Based Dietary Assessment for Food Recognition and
Portion Size Estimation [6.603050343996914]
We propose an end-to-end multi-task framework that can achieve both food classification and food portion size estimation.
Our results outperforms the baseline methods for both classification accuracy and mean absolute error for portion estimation.
arXiv Detail & Related papers (2020-04-27T21:35:07Z) - Cross-Modal Food Retrieval: Learning a Joint Embedding of Food Images
and Recipes with Semantic Consistency and Attention Mechanism [70.85894675131624]
We learn an embedding of images and recipes in a common feature space, such that the corresponding image-recipe embeddings lie close to one another.
We propose Semantic-Consistent and Attention-based Networks (SCAN), which regularize the embeddings of the two modalities through aligning output semantic probabilities.
We show that we can outperform several state-of-the-art cross-modal retrieval strategies for food images and cooking recipes by a significant margin.
arXiv Detail & Related papers (2020-03-09T07:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.