NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images
- URL: http://arxiv.org/abs/2405.07814v1
- Date: Mon, 13 May 2024 14:56:55 GMT
- Title: NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images
- Authors: Matthew Keller, Chi-en Amy Tai, Yuhao Chen, Pengcheng Xi, Alexander Wong,
- Abstract summary: Self-reporting methods are often inaccurate and suffer from substantial bias.
Recent work has explored using computer vision prediction systems to predict nutritional information from food images.
This paper aims to enhance the efficacy of dietary intake estimation by leveraging various neural network architectures.
- Score: 63.314702537010355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many aging individuals encounter challenges in effectively tracking their dietary intake, exacerbating their susceptibility to nutrition-related health complications. Self-reporting methods are often inaccurate and suffer from substantial bias; however, leveraging intelligent prediction methods can automate and enhance precision in this process. Recent work has explored using computer vision prediction systems to predict nutritional information from food images. Still, these methods are often tailored to specific situations, require other inputs in addition to a food image, or do not provide comprehensive nutritional information. This paper aims to enhance the efficacy of dietary intake estimation by leveraging various neural network architectures to directly predict a meal's nutritional content from its image. Through comprehensive experimentation and evaluation, we present NutritionVerse-Direct, a model utilizing a vision transformer base architecture with three fully connected layers that lead to five regression heads predicting calories (kcal), mass (g), protein (g), fat (g), and carbohydrates (g) present in a meal. NutritionVerse-Direct yields a combined mean average error score on the NutritionVerse-Real dataset of 412.6, an improvement of 25.5% over the Inception-ResNet model, demonstrating its potential for improving dietary intake estimation accuracy.
Related papers
- How Much You Ate? Food Portion Estimation on Spoons [63.611551981684244]
Current image-based food portion estimation algorithms assume that users take images of their meals one or two times.
We introduce an innovative solution that utilizes stationary user-facing cameras to track food items on utensils.
The system is reliable for estimation of nutritional content of liquid-solid heterogeneous mixtures such as soups and stews.
arXiv Detail & Related papers (2024-05-12T00:16:02Z) - NutritionVerse-Real: An Open Access Manually Collected 2D Food Scene
Dataset for Dietary Intake Estimation [68.49526750115429]
We introduce NutritionVerse-Real, an open access manually collected 2D food scene dataset for dietary intake estimation.
The NutritionVerse-Real dataset was created by manually collecting images of food scenes in real life, measuring the weight of every ingredient and computing the associated dietary content of each dish.
arXiv Detail & Related papers (2023-11-20T11:05:20Z) - DPF-Nutrition: Food Nutrition Estimation via Depth Prediction and Fusion [0.8579795118452238]
DPF-Nutrition is an end-to-end nutrition estimation method using monocular images.
In DPF-Nutrition, we introduced a depth prediction module to generate depth maps, thereby improving the accuracy of food portion estimation.
We also designed an RGB-D fusion module that combined monocular images with the predicted depth information, resulting in better performance for nutrition estimation.
arXiv Detail & Related papers (2023-10-18T04:23:05Z) - NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches [59.38343165508926]
Accurate dietary intake estimation is critical for informing policies and programs to support healthy eating.
Recent work has focused on using computer vision and machine learning to automatically estimate dietary intake from food images.
We introduce NutritionVerse- Synth, the first large-scale dataset of 84,984 synthetic 2D food images with associated dietary information.
We also collect a real image dataset, NutritionVerse-Real, containing 889 images of 251 dishes to evaluate realism.
arXiv Detail & Related papers (2023-09-14T13:29:41Z) - NutritionVerse-3D: A 3D Food Model Dataset for Nutritional Intake
Estimation [65.47310907481042]
One in four older adults are malnourished.
Machine learning and computer vision show promise of automated nutrition tracking methods of food.
NutritionVerse-3D is a large-scale high-resolution dataset of 105 3D food models.
arXiv Detail & Related papers (2023-04-12T05:27:30Z) - Vision-Based Food Analysis for Automatic Dietary Assessment [49.32348549508578]
This review presents one unified Vision-Based Dietary Assessment (VBDA) framework, which generally consists of three stages: food image analysis, volume estimation and nutrient derivation.
Deep learning makes VBDA gradually move to an end-to-end implementation, which applies food images to a single network to directly estimate the nutrition.
arXiv Detail & Related papers (2021-08-06T05:46:01Z) - Nutrition5k: Towards Automatic Nutritional Understanding of Generic Food [8.597152169571057]
We introduce Nutrition5k, a novel dataset of 5k diverse, real world food dishes with corresponding video streams, depth images, component weights, and high accuracy nutritional content annotation.
We demonstrate the potential of this dataset by training a computer vision algorithm capable of predicting the caloric and macronutrient values of a complex, real world dish at an accuracy that outperforms professional nutritionists.
arXiv Detail & Related papers (2021-03-04T22:59:22Z) - An Artificial Intelligence-Based System to Assess Nutrient Intake for
Hospitalised Patients [4.048427587958764]
Regular monitoring of nutrient intake in hospitalised patients plays a critical role in reducing the risk of disease-related malnutrition.
We propose a novel system based on artificial intelligence (AI) to accurately estimate nutrient intake.
arXiv Detail & Related papers (2020-03-18T15:28:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.