論文の概要: Scale-invariant representation of machine learning
- arxiv url: http://arxiv.org/abs/2109.02914v1
- Date: Tue, 7 Sep 2021 07:56:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-08 14:22:29.757225
- Title: Scale-invariant representation of machine learning
- Title(参考訳): 機械学習のスケール不変表現
- Authors: Sungyeop Lee and Junghyo Jo
- Abstract要約: 内部表現の頻度は、教師なし学習と教師なし学習の両方において、電力法則に従う。
本研究では,機械学習におけるパワー則の自然発生について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of machine learning stems from its structured data
representation. Similar data have close representation as compressed codes for
classification or emerged labels for clustering. We observe that the frequency
of the internal representation follows power laws in both supervised and
unsupervised learning. The scale-invariant distribution implies that machine
learning largely compresses frequent typical data, and at the same time,
differentiates many atypical data as outliers. In this study, we derive how the
power laws can naturally arise in machine learning. In terms of information
theory, the scale-invariant representation corresponds to a maximally uncertain
data grouping among possible representations that guarantee pre-specified
learning accuracy.
- Abstract(参考訳): 機械学習の成功は、その構造化データ表現に由来する。
類似したデータには、分類のための圧縮コードやクラスタリングのためのラベルとして密接な表現がある。
内部表現の頻度は教師なし学習と教師なし学習の両方においてパワー法則に従うことが観察される。
スケール不変分布は、機械学習が典型データを頻繁に圧縮すると同時に、多くの非定型データを外れ値として区別することを意味する。
本研究では,機械学習におけるパワー則の自然発生について考察する。
情報理論の観点では、スケール不変表現は、事前特定された学習精度を保証する可能な表現の間で最大不確定なデータグループ化に対応する。
関連論文リスト
- Fair Mixed Effects Support Vector Machine [0.0]
機械学習の公正性は、トレーニングデータに存在するバイアスを緩和し、不完全性をモデル化することを目的としている。
これは、モデルが民族性や性的指向といった繊細な特徴に基づいて決定するのを防ぐことで達成される。
両問題を同時に処理できるベクターマシンアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-10T12:25:06Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
正規化を行うために小さなニューラルネットワークを学習することは、事前定義を使用することよりも優れていることを示す。
実験の結果,正準化関数の学習は多くのタスクで同変関数を学習する既存の手法と競合することがわかった。
論文 参考訳(メタデータ) (2022-11-11T21:58:15Z) - Investigating Power laws in Deep Representation Learning [4.996066540156903]
本研究では,非ラベルデータセットにおける表現の質を評価するためのフレームワークを提案する。
表現学習に影響を与える3つの重要な属性に対して、電力法則の係数$alpha$を推定する。
特に$alpha$はラベルの知識のない表現から計算可能であり、非ラベル付きデータセットにおける表現の質を評価するためのフレームワークを提供する。
論文 参考訳(メタデータ) (2022-02-11T18:11:32Z) - Reasoning-Modulated Representations [85.08205744191078]
タスクが純粋に不透明でないような共通的な環境について研究する。
我々のアプローチは、新しいデータ効率表現学習の道を開く。
論文 参考訳(メタデータ) (2021-07-19T13:57:13Z) - Nonlinear Invariant Risk Minimization: A Causal Approach [5.63479133344366]
非線形環境下での分布外一般化を可能にする学習パラダイムを提案する。
我々は、非常に単純な変換までデータ表現の識別性を示す。
合成データと実世界のデータセットの両方に関する広範な実験は、我々のアプローチが様々なベースラインメソッドを大きく上回っていることを示している。
論文 参考訳(メタデータ) (2021-02-24T15:38:41Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
実世界のデータの解釈可能な非冗長表現を見つけることは、機械学習の鍵となる問題の一つである。
本稿では,オートエンコーダのトレーニングにデータ拡張を利用する新しい手法を提案する。
このような方法で変分オートエンコーダを訓練し、補助ネットワークによって変換結果を予測できるようにする。
論文 参考訳(メタデータ) (2020-10-10T14:04:44Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
本稿では,新しいタイプの解釈可能な機械学習手法を提案する。
量子シフトを用いた分類モデルでは、特徴空間の予測クラスへの分割を理解するのに役立ちます。
基本的に、実際のデータポイント(または特定の関心点)を使用し、特定の特徴をわずかに引き上げたり減少させたりした後の予測の変化を観察する。
論文 参考訳(メタデータ) (2020-09-11T16:35:53Z) - Modeling Generalization in Machine Learning: A Methodological and
Computational Study [0.8057006406834467]
我々は、機械学習の一般化を評価する際に、トレーニングデータの凸殻の概念を用いる。
機械学習モデルの一般化能力と次元に関するすべての指標との予期せぬ弱い関係を観察する。
論文 参考訳(メタデータ) (2020-06-28T19:06:16Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z) - Laplacian Denoising Autoencoder [114.21219514831343]
本稿では,新しいタイプの自動符号化器を用いてデータ表現を学習することを提案する。
勾配領域における潜伏クリーンデータを破損させて雑音入力データを生成する。
いくつかのビジュアルベンチマークの実験では、提案されたアプローチでより良い表現が学べることが示されている。
論文 参考訳(メタデータ) (2020-03-30T16:52:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。