論文の概要: QEnclave -- A practical solution for secure quantum cloud computing
- arxiv url: http://arxiv.org/abs/2109.02952v3
- Date: Tue, 21 Sep 2021 12:29:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 22:52:26.264880
- Title: QEnclave -- A practical solution for secure quantum cloud computing
- Title(参考訳): QEnclave -- セキュアな量子クラウドコンピューティングのための実用的なソリューション
- Authors: Yao Ma, Elham Kashefi, Myrto Arapinis, Kaushik Chakraborty and Marc
Kaplan
- Abstract要約: QEnclaveと呼ばれるセキュアなハードウェアデバイスを導入し、古典的な制御のみを使用しながら、量子演算のリモート実行をセキュアにすることができる。
興味深いことに、我々のQEnclaveはシングルキュービット回転のみを実行するが、それでも、キュービットのソースが敵によって制御されている場合でも、任意の量子計算を確保するために使用できる。
- 参考スコア(独自算出の注目度): 3.171632548686767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a secure hardware device named a QEnclave that can secure the
remote execution of quantum operations while only using classical controls.
This device extends to quantum computing the classical concept of a secure
enclave which isolates a computation from its environment to provide privacy
and tamper-resistance. Remarkably, our QEnclave only performs single-qubit
rotations, but can nevertheless be used to secure an arbitrary quantum
computation even if the qubit source is controlled by an adversary. More
precisely, attaching a QEnclave to a quantum computer, a remote client
controlling the QEnclave can securely delegate its computation to the server
solely using classical communication. We investigate the security of our
QEnclave by modeling it as an ideal functionality named Remote State Rotation.
We show that this resource, similar to previously introduced functionality of
remote state preparation, allows blind delegated quantum computing with perfect
security. Our proof relies on standard tools from delegated quantum computing.
Working in the Abstract Cryptography framework, we show a construction of
remote state preparation from remote state rotation preserving the security. An
immediate consequence is the weakening of the requirements for blind delegated
computation. While previous delegated protocols were relying on a client that
can either generate or measure quantum states, we show that this same
functionality can be achieved with a client that only transforms quantum states
without generating or measuring them.
- Abstract(参考訳): 我々は,量子演算の遠隔実行を古典的制御のみを用いて確保できる,qenclaveと呼ばれるセキュアなハードウェアデバイスを導入する。
このデバイスは、従来のセキュアなエンクレーブの概念である量子コンピューティングに拡張され、計算を環境から分離し、プライバシとタンパー抵抗を提供する。
驚くべきことに、qenclaveはシングル量子ビット回転のみを実行するが、量子ビット源が敵によって制御されている場合でも任意の量子計算を確保するために使うことができる。
より正確には、QEnclaveを量子コンピュータにアタッチすると、QEnclaveを制御するリモートクライアントは、その計算を古典的な通信だけで安全にサーバに委譲することができる。
我々はQEnclaveのセキュリティをRemote State Rotationという理想的な機能としてモデル化することで検討する。
このリソースは、以前導入されたリモート状態の準備機能と同様、完全なセキュリティを備えたブラインドデリゲート量子コンピューティングを可能にする。
私たちの証明は、デリゲート量子コンピューティングの標準ツールに依存しています。
抽象暗号フレームワークにおいて,セキュリティを保った遠隔状態回転による遠隔状態準備の構築について述べる。
直近の結果は、ブラインドデリゲートされた計算に対する要求の弱化である。
従来のデリゲートプロトコルは、量子状態の生成または測定が可能なクライアントに依存していたが、この同じ機能は、量子状態を生成または測定することなく変換するクライアントで実現できることを示す。
関連論文リスト
- Quantum delegated and federated learning via quantum homomorphic encryption [0.5939164722752263]
本稿では,量子デリゲート型およびフェデレート型学習を無理論データプライバシ保証で実現可能な汎用フレームワークを提案する。
この枠組みの下での学習と推論は、盲点量子コンピューティングに基づくスキームに比べて通信の複雑さが著しく低いことが示される。
論文 参考訳(メタデータ) (2024-09-28T14:13:50Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
量子セキュア直接通信(QSDC)は、確実に安全であり、量子コンピューティングの脅威を克服する。
関連するポイントツーポイント通信プロトコルについて詳述し、情報の保護と送信方法を示す。
論文 参考訳(メタデータ) (2023-11-23T12:40:47Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
変分量子アルゴリズム(VQA)は、量子デバイス上で量子アドバンテージを達成するための最も有望な候補の1つである。
クライアントのプライベートデータは、そのような量子クラウドモデルで量子サーバにリークされる可能性がある。
量子サーバが暗号化データを計算するための新しい量子ホモモルフィック暗号(QHE)スキームが構築されている。
論文 参考訳(メタデータ) (2023-01-25T07:00:13Z) - Simulation of Networked Quantum Computing on Encrypted Data [0.0]
暗号技術は、量子コンピューティングパワーの安全な遠隔利用のために開発されなければならない。
シミュレーションプラットフォームLIQ$Ui|rangle上で古典的にテストされた,そのようなプロトコルのシミュレーションを提案する。
論文 参考訳(メタデータ) (2022-12-25T20:02:53Z) - Modulation leakage-free continuous-variable quantum key distribution [1.8268488712787332]
コヒーレント状態に基づく連続可変(CV)QKDはセキュア通信のための魅力的なスキームである。
この研究は、CVQKDシステムを保護するためのステップである。
論文 参考訳(メタデータ) (2022-05-15T10:07:19Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
我々は、セキュアな古典的リピータと量子セキュアな直接通信原理を組み合わせた量子ネットワークを考案する。
これらのネットワークでは、量子耐性アルゴリズムから引き出された暗号文を、ノードに沿ってQSDCを用いて送信する。
我々は,セキュアな古典的リピータに基づくハイブリッド量子ネットワークの実証実験を行った。
論文 参考訳(メタデータ) (2022-02-08T03:24:06Z) - Delegating Multi-Party Quantum Computations vs. Dishonest Majority in
Two Quantum Rounds [0.0]
マルチパーティ量子計算(MPQC)は、量子ネットワークのキラーアプリケーションとして多くの注目を集めている。
単一の正直なクライアントであっても、盲目性と妥当性を達成できる構成可能なプロトコルを提案する。
論文 参考訳(メタデータ) (2021-02-25T15:58:09Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
古典的アリス(Alice)と量子的ボブ(Quantum Bob)が古典的なチャネルを通してのみ通信できるような設定を考える。
悪質な量子逆数の場合,ブラックボックスシミュレーションを用いた2次元量子関数を実現することは,一般に不可能であることを示す。
我々は、QMA関係Rの古典的量子知識(PoQK)プロトコルを入力として、古典的当事者によって検証可能なRのゼロ知識PoQKを出力するコンパイラを提供する。
論文 参考訳(メタデータ) (2020-10-15T17:55:31Z) - Security Limitations of Classical-Client Delegated Quantum Computing [54.28005879611532]
クライアントは、古典的なチャネルを使用して量子状態をリモートで準備する。
サブモジュールとして$RSP_CC$を採用することで生じるプライバシ損失は、不明である。
特定の$RSP_CC$プロトコルは、少なくともいくつかのコンテキストにおいて量子チャネルを置き換えることができることを示す。
論文 参考訳(メタデータ) (2020-07-03T13:15:13Z) - Anti-Forging Quantum Data: Cryptographic Verification of Quantum
Computational Power [1.9737117321211988]
量子コンピューティングは、インターネットを通じて量子コンピューティングのパワーを体験するための人気のモデルとして生まれつつある。
ユーザは、サーバから送信される出力文字列が本当に量子ハードウェアからのものであることを、どうやって確認できますか?
論文 参考訳(メタデータ) (2020-05-04T14:28:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。