論文の概要: Empathetic Dialogue Generation with Pre-trained RoBERTa-GPT2 and
External Knowledge
- arxiv url: http://arxiv.org/abs/2109.03004v1
- Date: Tue, 7 Sep 2021 11:40:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-08 14:52:20.870442
- Title: Empathetic Dialogue Generation with Pre-trained RoBERTa-GPT2 and
External Knowledge
- Title(参考訳): 事前学習RoBERTa-GPT2を用いた共感対話生成と外部知識
- Authors: Ye Liu, Wolfgang Maier, Wolfgang Minker and Stefan Ultes
- Abstract要約: 共感的対話生成のためのRoBERTa-GPT2を提案する。
事前訓練された自己エンコードRoBERTaはエンコーダとして利用され、事前訓練された自己回帰GPT-2はデコーダとして使用される。
- 参考スコア(独自算出の注目度): 6.1478669848771546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One challenge for dialogue agents is to recognize feelings of the
conversation partner and respond accordingly. In this work, RoBERTa-GPT2 is
proposed for empathetic dialogue generation, where the pre-trained
auto-encoding RoBERTa is utilised as encoder and the pre-trained
auto-regressive GPT-2 as decoder. With the combination of the pre-trained
RoBERTa and GPT-2, our model realizes a new state-of-the-art emotion accuracy.
To enable the empathetic ability of RoBERTa-GPT2 model, we propose a
commonsense knowledge and emotional concepts extractor, in which the
commonsensible and emotional concepts of dialogue context are extracted for the
GPT-2 decoder. The experiment results demonstrate that the empathetic dialogue
generation benefits from both pre-trained encoder-decoder architecture and
external knowledge.
- Abstract(参考訳): 対話エージェントにとっての課題は、会話相手の感情を認識し、それに応じて応答することである。
本研究では,RoBERTa-GPT2をエンコーダとして,事前学習した自動エンコードRoBERTaをデコーダとして,共感的対話生成のために提案する。
事前学習したRoBERTaとGPT-2を組み合わせることで,新しい感情の精度を実現する。
ロベルタgpt2モデルの共感能力を実現するために、gpt-2デコーダに対して対話コンテキストの共通認識と感情概念を抽出する、常識知識と感情概念抽出器を提案する。
実験の結果, エンコーダ・デコーダアーキテクチャと外部知識の両面から, 共感的対話生成の利点が示された。
関連論文リスト
- Towards Empathetic Conversational Recommender Systems [77.53167131692]
本稿では,共感型会話レコメンデータ(ECR)フレームワークを提案する。
ECRには、感情対応アイテムレコメンデーションと感情対応応答生成という、2つの主要なモジュールが含まれている。
ReDialデータセットの実験は、推奨精度を高め、ユーザの満足度を向上させる上で、我々のフレームワークの有効性を検証する。
論文 参考訳(メタデータ) (2024-08-30T15:43:07Z) - Acknowledgment of Emotional States: Generating Validating Responses for
Empathetic Dialogue [21.621844911228315]
本研究は,共感的対話を有効活用するための最初の枠組みを紹介する。
本手法では,1)検証タイミング検出,2)ユーザの感情状態の同定,3)応答生成の検証を行う。
論文 参考訳(メタデータ) (2024-02-20T07:20:03Z) - Uncovering Hidden Connections: Iterative Search and Reasoning for Video-grounded Dialog [83.63849872250651]
ビデオグラウンドダイアログは、正確な応答生成のために、ダイアログ履歴とビデオコンテンツの両方を深く理解する必要がある。
本稿では,テキストエンコーダ,ビジュアルエンコーダ,ジェネレータで構成される反復探索・推論フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-11T07:37:13Z) - Think Twice: A Human-like Two-stage Conversational Agent for Emotional Response Generation [16.659457455269127]
感情対話生成のための2段階対話エージェントを提案する。
まず,感情アノテートされた対話コーパスを使わずに訓練された対話モデルを用いて,文脈意味に合致するプロトタイプ応答を生成する。
第二に、第一段階のプロトタイプは共感仮説で制御可能な感情精錬器によって修正される。
論文 参考訳(メタデータ) (2023-01-12T10:03:56Z) - KPT: Keyword-guided Pre-training for Grounded Dialog Generation [82.68787152707455]
KPT(Guided Pre-Training)は,グラウンドドダイアログ生成のための自己教師付き事前学習手法である。
具体的には、事前訓練された言語モデルを用いて、ダイアログ内の最も不確実なトークンをキーワードとして抽出する。
我々は,対話行為,知識グラフ,ペルソナ記述,ウィキペディアの文節など,数発の知識ベース生成タスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-12-04T04:05:01Z) - SPACE-2: Tree-Structured Semi-Supervised Contrastive Pre-training for
Task-Oriented Dialog Understanding [68.94808536012371]
本稿では,限定ラベル付きダイアログと大規模未ラベルダイアログコーパスから対話表現を学習する,木構造付き事前学習会話モデルを提案する。
提案手法は,7つのデータセットと4つの一般的な対話理解タスクからなるDialoGLUEベンチマークにおいて,最新の結果が得られる。
論文 参考訳(メタデータ) (2022-09-14T13:42:50Z) - DialogVED: A Pre-trained Latent Variable Encoder-Decoder Model for
Dialog Response Generation [80.45816053153722]
DialogVEDは、拡張エンコーダデコーダ事前トレーニングフレームワークに連続潜伏変数を導入し、応答の関連性と多様性を高める。
我々は,PersonaChat,DailyDialog,DSTC7-AVSDベンチマークを用いて応答生成実験を行った。
論文 参考訳(メタデータ) (2022-04-27T16:18:15Z) - Emotion-Aware Transformer Encoder for Empathetic Dialogue Generation [6.557082555839738]
ユーザの発話中の感情的商をキャプチャする感情認識型トランスフォーマーエンコーダを提案する。
感情検知モジュールは、初期段階におけるユーザの感情状態を決定する。
感情埋め込みによる単語埋め込みの追加と正規化を行う新しいトランスフォーマーエンコーダを提案する。
論文 参考訳(メタデータ) (2022-04-24T17:05:36Z) - A Unified Pre-training Framework for Conversational AI [25.514505462661763]
PLATO-2は、簡略化された1対1のマッピング関係に適合するように、2段階のカリキュラム学習によって訓練される。
PLATO-2は3つのタスクで1位を獲得し、様々な対話システムのための統一されたフレームワークとしての有効性を検証する。
論文 参考訳(メタデータ) (2021-05-06T07:27:11Z) - VD-BERT: A Unified Vision and Dialog Transformer with BERT [161.0016161052714]
VD-BERTは,視覚対話型トランスフォーマーの簡易かつ効果的なフレームワークである。
我々は、視覚的グラウンドトレーニングにより、視覚と対話内容の効果的な融合にBERTを適用した。
我々のモデルは新たな芸術状態をもたらし、シングルモデルとアンサンブル設定の両方で最高位を達成する。
論文 参考訳(メタデータ) (2020-04-28T04:08:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。