Improving Phenotype Prediction using Long-Range Spatio-Temporal Dynamics
of Functional Connectivity
- URL: http://arxiv.org/abs/2109.03115v1
- Date: Tue, 7 Sep 2021 14:23:34 GMT
- Title: Improving Phenotype Prediction using Long-Range Spatio-Temporal Dynamics
of Functional Connectivity
- Authors: Simon Dahan, Logan Z. J. Williams, Daniel Rueckert, Emma C. Robinson
- Abstract summary: We present an approach to model functional brain connectivity across space and time.
We use the Human Connectome Project dataset on sex classification and fluid intelligence prediction.
Results show a prediction accuracy of 94.4% for sex, and an improvement of correlation with fluid intelligence of 0.325 vs 0.144, relative to a baseline model that encodes space and time separately.
- Score: 9.015698823470899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The study of functional brain connectivity (FC) is important for
understanding the underlying mechanisms of many psychiatric disorders. Many
recent analyses adopt graph convolutional networks, to study non-linear
interactions between functionally-correlated states. However, although patterns
of brain activation are known to be hierarchically organised in both space and
time, many methods have failed to extract powerful spatio-temporal features. To
overcome those challenges, and improve understanding of long-range functional
dynamics, we translate an approach, from the domain of skeleton-based action
recognition, designed to model interactions across space and time. We evaluate
this approach using the Human Connectome Project (HCP) dataset on sex
classification and fluid intelligence prediction. To account for subject
topographic variability of functional organisation, we modelled functional
connectomes using multi-resolution dual-regressed (subject-specific) ICA nodes.
Results show a prediction accuracy of 94.4% for sex classification (an increase
of 6.2% compared to other methods), and an improvement of correlation with
fluid intelligence of 0.325 vs 0.144, relative to a baseline model that encodes
space and time separately. Results suggest that explicit encoding of
spatio-temporal dynamics of brain functional activity may improve the precision
with which behavioural and cognitive phenotypes may be predicted in the future.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest.
These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand.
We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series.
arXiv Detail & Related papers (2024-05-19T23:35:06Z) - TC-LIF: A Two-Compartment Spiking Neuron Model for Long-Term Sequential
Modelling [54.97005925277638]
The identification of sensory cues associated with potential opportunities and dangers is frequently complicated by unrelated events that separate useful cues by long delays.
It remains a challenging task for state-of-the-art spiking neural networks (SNNs) to establish long-term temporal dependency between distant cues.
We propose a novel biologically inspired Two-Compartment Leaky Integrate-and-Fire spiking neuron model, dubbed TC-LIF.
arXiv Detail & Related papers (2023-08-25T08:54:41Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
We develop a novel attention mesh convolution model to predict cortical gyro-sulcal segmentation maps on individual brains.
Experiments show that the prediction performance via our model outperforms other state-of-the-art models.
arXiv Detail & Related papers (2022-05-21T14:08:53Z) - Learning Dynamic Graph Representation of Brain Connectome with
Spatio-Temporal Attention [33.049423523704824]
We propose STAGIN, a method for learning dynamic graph representation of the brain connectome with temporal attention.
Experiments on the HCP-Rest and the HCP-Task datasets demonstrate exceptional performance of our proposed method.
arXiv Detail & Related papers (2021-05-27T23:06:50Z) - Weighted Ensemble-model and Network Analysis: A method to predict fluid
intelligence via naturalistic functional connectivity [2.66512000865131]
We propose a new method namely Weighted Ensemble-model and Network Analysis.
It combines the machine learning and graph theory for improved fluid intelligence prediction.
Our proposed methods achieved best performance with 3.85 mean absolute deviation, 0.66 correlation coefficient and 0.42 R-squared coefficient.
arXiv Detail & Related papers (2021-01-06T11:17:49Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
In neural networks, any interacting features must follow a strongly weighted connection to common hidden units.
We propose a new measure for quantifying interaction strength, based upon the well-received theory of persistent homology.
A Persistence Interaction detection(PID) algorithm is developed to efficiently detect interactions.
arXiv Detail & Related papers (2020-10-25T02:15:24Z) - Efficient Inference of Flexible Interaction in Spiking-neuron Networks [41.83710212492543]
We use the nonlinear Hawkes process to model excitatory or inhibitory interactions among neurons.
We show our algorithm can estimate the temporal dynamics of interaction and reveal the interpretable functional connectivity underlying neural spike trains.
arXiv Detail & Related papers (2020-06-23T09:10:30Z) - Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis [11.85489505372321]
We train a-temporal graph convolutional network (ST-GCN) on short sub-sequences of the BOLD time series to model the non-stationary nature of functional connectivity.
St-GCN is significantly more accurate than common approaches in predicting gender and age based on BOLD signals.
arXiv Detail & Related papers (2020-03-24T01:56:50Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.