Dynamic Programming Techniques for Enhancing Cognitive Representation in Knowledge Tracing
- URL: http://arxiv.org/abs/2506.02949v1
- Date: Tue, 03 Jun 2025 14:44:48 GMT
- Title: Dynamic Programming Techniques for Enhancing Cognitive Representation in Knowledge Tracing
- Authors: Lixiang Xu, Xianwei Ding, Xin Yuan, Richang Hong, Feiping Nie, Enhong Chen, Philip S. Yu,
- Abstract summary: We propose the Cognitive Representation Dynamic Programming based Knowledge Tracing (CRDP-KT) model.<n>It is a dynamic programming algorithm to optimize cognitive representations based on the difficulty of the questions and the performance intervals between them.<n>It provides more accurate and systematic input features for subsequent model training, thereby minimizing distortion in the simulation of cognitive states.
- Score: 125.75923987618977
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge Tracing (KT) involves monitoring the changes in a student's knowledge over time by analyzing their past responses, with the goal of predicting future performance. However, most existing methods primarily focus on feature enhancement, while overlooking the deficiencies in cognitive representation and the ability to express cognition-issues often caused by interference from non-cognitive factors such as slipping and guessing. This limitation hampers the ability to capture the continuity and coherence of the student's cognitive process. As a result, many methods may introduce more prediction bias and modeling costs due to their inability to maintain cognitive continuity and coherence. Based on the above discussion, we propose the Cognitive Representation Dynamic Programming based Knowledge Tracing (CRDP-KT) model. This model em ploys a dynamic programming algorithm to optimize cognitive representations based on the difficulty of the questions and the performance intervals between them. This approach ensures that the cognitive representation aligns with the student's cognitive patterns, maintaining overall continuity and coherence. As a result, it provides more accurate and systematic input features for subsequent model training, thereby minimizing distortion in the simulation of cognitive states. Additionally, the CRDP-KT model performs partitioned optimization of cognitive representations to enhance the reliability of the optimization process. Furthermore, it improves its ability to express the student's cognition through a weighted fusion of optimized record representations and re lationships learned from a bipartite graph. Finally, experiments conducted on three public datasets validate the effectiveness of the proposed CRDP-KT model.
Related papers
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - CIKT: A Collaborative and Iterative Knowledge Tracing Framework with Large Language Models [14.273311275013057]
Knowledge Tracing aims to model a student's learning state over time and predict their future performance.<n>Traditional KT methods often face challenges in explainability, scalability, and effective modeling of complex knowledge dependencies.<n>We propose Collaborative Iterative Knowledge Tracing (CIKT), a framework that harnesses Large Language Models to enhance both prediction accuracy and explainability.
arXiv Detail & Related papers (2025-05-23T10:16:16Z) - Two Experts Are All You Need for Steering Thinking: Reinforcing Cognitive Effort in MoE Reasoning Models Without Additional Training [86.70255651945602]
We introduce a novel inference-time steering methodology called Reinforcing Cognitive Experts (RICE)<n>RICE aims to improve reasoning performance without additional training or complexs.<n> Empirical evaluations with leading MoE-based LRMs demonstrate noticeable and consistent improvements in reasoning accuracy, cognitive efficiency, and cross-domain generalization.
arXiv Detail & Related papers (2025-05-20T17:59:16Z) - Personalized Student Knowledge Modeling for Future Learning Resource Prediction [0.0]
We propose Knowledge Modeling and Material Prediction (KMaP) for personalized and simultaneous modeling of student knowledge and behavior.<n>KMaP employs clustering-based student profiling to create personalized student representations, improving predictions of future learning resource preferences.<n>Experiments on two real-world datasets confirm significant behavioral differences across student clusters.
arXiv Detail & Related papers (2025-05-20T08:23:50Z) - Improving Question Embeddings with Cognitiv Representation Optimization for Knowledge Tracing [77.14348157016518]
The Knowledge Tracing (KT) aims to track changes in students' knowledge status and predict their future answers based on their historical answer records.<n>Current research on KT modeling focuses on predicting student' future performance based on existing, unupdated records of student learning interactions.<n>We propose a Cognitive Representation Optimization for Knowledge Tracing model, which utilizes a dynamic programming algorithm to optimize structure of cognitive representations.
arXiv Detail & Related papers (2025-04-05T09:32:03Z) - DASKT: A Dynamic Affect Simulation Method for Knowledge Tracing [51.665582274736785]
Knowledge Tracing (KT) predicts future performance by students' historical computation, and understanding students' affective states can enhance the effectiveness of KT.<n>We propose Affect Dynamic Knowledge Tracing (DASKT) to explore the impact of various student affective states on their knowledge states.<n>Our research highlights a promising avenue for future studies, focusing on achieving high interpretability and accuracy.
arXiv Detail & Related papers (2025-01-18T10:02:10Z) - Idempotent Unsupervised Representation Learning for Skeleton-Based Action Recognition [13.593511876719367]
We propose a novel skeleton-based idempotent generative model (IGM) for unsupervised representation learning.
Our experiments on benchmark datasets, NTU RGB+D and PKUMMD, demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2024-10-27T06:29:04Z) - Unlocking Structured Thinking in Language Models with Cognitive Prompting [0.0]
We propose cognitive prompting as a novel approach to guide problem-solving in large language models (LLMs)<n>We introduce three variants: a deterministic sequence of cognitive operations, a self-adaptive variant, and a hybrid variant.<n>Experiments with LLaMA, Gemma2, and Qwen models in each two sizes on the arithmetic reasoning benchmark GSM8K demonstrate that cognitive prompting significantly improves performance compared to standard question answering.
arXiv Detail & Related papers (2024-10-03T19:53:47Z) - Mimicking Human Intuition: Cognitive Belief-Driven Q-Learning [5.960184723807347]
We propose Cognitive Belief-Driven Q-Learning (CBDQ), which integrates subjective belief modeling into the Q-learning framework.
CBDQ enhances decision-making accuracy by endowing agents with human-like learning and reasoning capabilities.
We evaluate the proposed method on discrete control benchmark tasks in various complicate environments.
arXiv Detail & Related papers (2024-10-02T16:50:29Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
We propose to expose captured knowledge in the form of a directed acyclic causal graph.
We also design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs.
The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner.
arXiv Detail & Related papers (2023-09-30T20:59:42Z) - Recursive Counterfactual Deconfounding for Object Recognition [20.128093193861165]
We propose a Recursive Counterfactual Deconfounding model for object recognition in both closed-set and open-set scenarios.
We show that the proposed RCD model performs better than 11 state-of-the-art baselines significantly in most cases.
arXiv Detail & Related papers (2023-09-25T07:46:41Z) - A Novel Neural-symbolic System under Statistical Relational Learning [47.30190559449236]
We propose a neural-symbolic framework based on statistical relational learning, referred to as NSF-SRL.<n>Results of symbolic reasoning are utilized to refine and correct the predictions made by deep learning models, while deep learning models enhance the efficiency of the symbolic reasoning process.<n>We believe that this approach sets a new standard for neural-symbolic systems and will drive future research in the field of general artificial intelligence.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.