論文の概要: ExCode-Mixed: Explainable Approaches towards Sentiment Analysis on
Code-Mixed Data using BERT models
- arxiv url: http://arxiv.org/abs/2109.03200v1
- Date: Tue, 7 Sep 2021 17:06:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-08 15:48:25.482340
- Title: ExCode-Mixed: Explainable Approaches towards Sentiment Analysis on
Code-Mixed Data using BERT models
- Title(参考訳): ExCode-Mixed:BERTモデルを用いたコードミキシングデータの知覚分析への説明可能なアプローチ
- Authors: Aman Priyanshu, Aleti Vardhan, Sudarshan Sivakumar, Supriti Vijay,
Nipuna Chhabra
- Abstract要約: インドのソーシャルメディアサイトは大量のコードミキシングデータを生み出している。
本稿では、コード混合感情分析に説明可能なアプローチを統合するための適切な方法論を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing use of social media sites in countries like India has given
rise to large volumes of code-mixed data. Sentiment analysis of this data can
provide integral insights into people's perspectives and opinions. Developing
robust explainability techniques which explain why models make their
predictions becomes essential. In this paper, we propose an adequate
methodology to integrate explainable approaches into code-mixed sentiment
analysis.
- Abstract(参考訳): インドのような国でソーシャルメディアサイトの利用が増加すると、大量のコード混合データが生まれている。
このデータの感性分析は、人々の視点や意見に不可欠な洞察を与えることができる。
モデルが予測をする理由を説明するロバストな説明可能性技術の開発が不可欠である。
本稿では,コード混合感情分析に説明可能なアプローチを統合するための適切な手法を提案する。
関連論文リスト
- Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
我々は,関係学習をハイパーグラフリカバリとして形式化する数学的モデルを導入し,基礎モデル(FM)の事前学習について検討する。
我々のフレームワークでは、世界はハイパーグラフとして表現され、データはハイパーエッジからランダムなサンプルとして抽象化される。我々は、このハイパーグラフを復元するための事前学習モデル(PTM)の有効性を理論的に検証し、ミニマックスに近い最適スタイルでデータ効率を解析する。
論文 参考訳(メタデータ) (2024-06-17T06:20:39Z) - Relational Graph Convolutional Networks for Sentiment Analysis [0.0]
Graph Convolutional Networks(NRGC)は、グラフ内のノードとして表されるデータポイント間の依存関係をキャプチャすることで、解釈性と柔軟性を提供する。
本稿では,Amazon および Digikala データセットの製品レビューにおいて,BERT や RoBERTa などの事前学習言語モデルと RGCN アーキテクチャを用いたアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-04-16T07:27:49Z) - VEC-SBM: Optimal Community Detection with Vectorial Edges Covariates [67.51637355249986]
本稿では,コミュニティ検出のための統計フレームワークであるブロックモデル(SBM)の拡張について検討する。
本稿では,反復的改良手法に基づく新しいアルゴリズムを提案し,潜在コミュニティを最適に回復することを示す。
コミュニティ検出プロセスにおいて,エッジ側情報を活用する付加価値を厳格に評価する。
論文 参考訳(メタデータ) (2024-02-29T02:19:55Z) - Understanding Before Recommendation: Semantic Aspect-Aware Review Exploitation via Large Language Models [53.337728969143086]
レコメンデーションシステムは、クリックやレビューのようなユーザとイテムのインタラクションを利用して表現を学習する。
従来の研究では、様々な側面や意図にまたがるユーザの嗜好をモデル化することで、推奨精度と解釈可能性を改善する。
そこで本研究では,意味的側面と認識的相互作用を明らかにするためのチェーンベースのプロンプト手法を提案する。
論文 参考訳(メタデータ) (2023-12-26T15:44:09Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
機械学習モデル構築の実践シナリオにおいて、説明が人間の意思決定を改善するかどうかを評価する。
驚いたことに、サリエンシマップが提供されたとき、タスクが大幅に改善されたという証拠は見つからなかった。
以上の結果から,サリエンシに基づく説明における誤解の可能性と有用性について注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T23:13:23Z) - Mixture of von Mises-Fisher distribution with sparse prototypes [0.0]
von Mises-Fisher分布の混合は、単位超球面上のデータをクラスタリングするのに使うことができる。
本稿では,l1のペナル化確率を用いてフォン・ミーゼス混合物を推定する。
論文 参考訳(メタデータ) (2022-12-30T08:00:38Z) - A Survey of Mix-based Data Augmentation: Taxonomy, Methods, Applications, and Explainability [29.40977854491399]
データ拡張(DA)は、現代の機械学習やディープニューラルネットワークでは不可欠である。
この調査は、MixDA(Mix-based Data Augmentation)と呼ばれるDAテクニックの重要なサブセットを包括的にレビューする。
単一のサンプルやデータセット全体を運用する従来のDAアプローチとは対照的に、MixDAはその有効性、単純性、柔軟性、計算効率、理論的基礎、幅広い適用性のために際立っている。
論文 参考訳(メタデータ) (2022-12-21T09:58:14Z) - Integrating Prior Knowledge in Post-hoc Explanations [3.6066164404432883]
ポストホック解釈可能性法は、訓練された決定モデルの予測をユーザーに説明することを目的としている。
本稿では,事前知識を解釈可能性の目標に明示的に統合するコスト関数を提案する。
本稿では,KICE(Knowledge Integration in Counterfactual Explanation)と呼ばれる新しい解釈可能性手法を提案する。
論文 参考訳(メタデータ) (2022-04-25T13:09:53Z) - Sentiment Analysis of Persian-English Code-mixed Texts [0.0]
ソーシャルメディアデータの構造化されていない性質から,多言語テキストやコード混合テキストの例が増えている。
本研究では,ペルシャ語と英語の混成ツイートのデータセットを収集,ラベル付けし,作成する。
本稿では,BERTプレトレーニング済み埋め込みと翻訳モデルを用いて,これらのツイートの極性スコアを自動的に学習するモデルを提案する。
論文 参考訳(メタデータ) (2021-02-25T06:05:59Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。