A Clustering-aided Ensemble Method for Predicting Ridesourcing Demand in
Chicago
- URL: http://arxiv.org/abs/2109.03433v1
- Date: Wed, 8 Sep 2021 04:58:29 GMT
- Title: A Clustering-aided Ensemble Method for Predicting Ridesourcing Demand in
Chicago
- Authors: Xiaojian Zhang and Xilei Zhao
- Abstract summary: This study proposes a Clustering-aided Ensemble Method (CEM) to forecast the zone-to-zone travel demand for ridesourcing services.
We implement and test the proposed methodology by using the ridesourcing-trip data in Chicago.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurately forecasting ridesourcing demand is important for effective
transportation planning and policy-making. With the rise of Artificial
Intelligence (AI), researchers have started to utilize machine learning models
to forecast travel demand, which, in many cases, can produce higher prediction
accuracy than statistical models. However, most existing machine-learning
studies used a global model to predict the demand and ignored the influence of
spatial heterogeneity (i.e., the spatial variations in the impacts of
explanatory variables). Spatial heterogeneity can drive the parameter
estimations varying over space; failing to consider the spatial variations may
limit the model's prediction performance. To account for spatial heterogeneity,
this study proposes a Clustering-aided Ensemble Method (CEM) to forecast the
zone-to-zone (census-tract-to-census-tract) travel demand for ridesourcing
services. Specifically, we develop a clustering framework to split the
origin-destination pairs into different clusters and ensemble the
cluster-specific machine learning models for prediction. We implement and test
the proposed methodology by using the ridesourcing-trip data in Chicago. The
results show that, with a more transparent and flexible model structure, the
CEM significantly improves the prediction accuracy than the benchmark models
(i.e., global machine-learning and statistical models directly trained on all
observations). This study offers transportation researchers and practitioners a
new methodology of travel demand forecasting, especially for new travel modes
like ridesourcing and micromobility.
Related papers
- Adaptive Transfer Clustering: A Unified Framework [2.3144964550307496]
We propose an adaptive transfer clustering (ATC) algorithm that automatically leverages the commonality in the presence of unknown discrepancy.
It applies to a broad class of statistical models including Gaussian mixture models, block models, and latent class models.
arXiv Detail & Related papers (2024-10-28T17:57:06Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Generative Causal Representation Learning for Out-of-Distribution Motion
Forecasting [13.99348653165494]
We propose Generative Causal Learning Representation to facilitate knowledge transfer under distribution shifts.
While we evaluate the effectiveness of our proposed method in human trajectory prediction models, GCRL can be applied to other domains as well.
arXiv Detail & Related papers (2023-02-17T00:30:44Z) - Beyond Ensemble Averages: Leveraging Climate Model Ensembles for Subseasonal Forecasting [10.083361616081874]
This study explores an application of machine learning (ML) models as post-processing tools for subseasonal forecasting.
Lagged numerical ensemble forecasts and observational data, including relative humidity, pressure at sea level, and geopotential height, are incorporated into various ML methods.
For regression, quantile regression, and tercile classification tasks, we consider using linear models, random forests, convolutional neural networks, and stacked models.
arXiv Detail & Related papers (2022-11-29T01:11:04Z) - Spatial machine-learning model diagnostics: a model-agnostic
distance-based approach [91.62936410696409]
This contribution proposes spatial prediction error profiles (SPEPs) and spatial variable importance profiles (SVIPs) as novel model-agnostic assessment and interpretation tools.
The SPEPs and SVIPs of geostatistical methods, linear models, random forest, and hybrid algorithms show striking differences and also relevant similarities.
The novel diagnostic tools enrich the toolkit of spatial data science, and may improve ML model interpretation, selection, and design.
arXiv Detail & Related papers (2021-11-13T01:50:36Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.