Beyond Ensemble Averages: Leveraging Climate Model Ensembles for Subseasonal Forecasting
- URL: http://arxiv.org/abs/2211.15856v5
- Date: Mon, 16 Sep 2024 16:43:41 GMT
- Title: Beyond Ensemble Averages: Leveraging Climate Model Ensembles for Subseasonal Forecasting
- Authors: Elena Orlova, Haokun Liu, Raphael Rossellini, Benjamin A. Cash, Rebecca Willett,
- Abstract summary: This study explores an application of machine learning (ML) models as post-processing tools for subseasonal forecasting.
Lagged numerical ensemble forecasts and observational data, including relative humidity, pressure at sea level, and geopotential height, are incorporated into various ML methods.
For regression, quantile regression, and tercile classification tasks, we consider using linear models, random forests, convolutional neural networks, and stacked models.
- Score: 10.083361616081874
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Producing high-quality forecasts of key climate variables, such as temperature and precipitation, on subseasonal time scales has long been a gap in operational forecasting. This study explores an application of machine learning (ML) models as post-processing tools for subseasonal forecasting. Lagged numerical ensemble forecasts (i.e., an ensemble where the members have different initialization dates) and observational data, including relative humidity, pressure at sea level, and geopotential height, are incorporated into various ML methods to predict monthly average precipitation and two-meter temperature two weeks in advance for the continental United States. For regression, quantile regression, and tercile classification tasks, we consider using linear models, random forests, convolutional neural networks, and stacked models (a multi-model approach based on the prediction of the individual ML models). Unlike previous ML approaches that often use ensemble mean alone, we leverage information embedded in the ensemble forecasts to enhance prediction accuracy. Additionally, we investigate extreme event predictions that are crucial for planning and mitigation efforts. Considering ensemble members as a collection of spatial forecasts, we explore different approaches to using spatial information. Trade-offs between different approaches may be mitigated with model stacking. Our proposed models outperform standard baselines such as climatological forecasts and ensemble means. In addition, we investigate feature importance, trade-offs between using the full ensemble or only the ensemble mean, and different modes of accounting for spatial variability.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Applications of machine learning to predict seasonal precipitation for East Africa [0.0]
Large-scale climate variability is linked to local or regional temperature or precipitation in a linear or non-linear fashion.
This paper investigates the use of interpretable ML methods to predict seasonal precipitation for East Africa in an operational setting.
arXiv Detail & Related papers (2024-09-10T06:16:03Z) - An ensemble of data-driven weather prediction models for operational sub-seasonal forecasting [0.08106028186803123]
We present an operations-ready multi-model ensemble weather forecasting system.
It is possible to achieve near-state-of-the-art subseasonal-to-seasonal forecasts using a multi-model ensembling approach with data-driven weather prediction models.
arXiv Detail & Related papers (2024-03-22T20:01:53Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Attention-Based Ensemble Pooling for Time Series Forecasting [55.2480439325792]
We propose a method for pooling that performs a weighted average over candidate model forecasts.
We test this method on two time-series forecasting problems: multi-step forecasting of the dynamics of the non-stationary Lorenz 63 equation, and one-step forecasting of the weekly incident deaths due to COVID-19.
arXiv Detail & Related papers (2023-10-24T22:59:56Z) - Joint Forecasting of Panoptic Segmentations with Difference Attention [72.03470153917189]
We study a new panoptic segmentation forecasting model that jointly forecasts all object instances in a scene.
We evaluate the proposed model on the Cityscapes and AIODrive datasets.
arXiv Detail & Related papers (2022-04-14T17:59:32Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - SubseasonalClimateUSA: A Dataset for Subseasonal Forecasting and
Benchmarking [20.442879707675115]
SubseasonalClimateUSA is a curated dataset for training and benchmarking subseasonal forecasting models in the United States.
We use this dataset to benchmark a diverse suite of models, including operational dynamical models, classical meteorological baselines, and ten state-of-the-art machine learning and deep learning-based methods from the literature.
arXiv Detail & Related papers (2021-09-21T18:42:10Z) - Feature-weighted Stacking for Nonseasonal Time Series Forecasts: A Case
Study of the COVID-19 Epidemic Curves [0.0]
We investigate ensembling techniques in forecasting and examine their potential for use in nonseasonal time-series.
We propose using late data fusion, using a stacked ensemble of two forecasting models and two meta-features that prove their predictive power during a preliminary forecasting stage.
arXiv Detail & Related papers (2021-08-19T14:44:46Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
We show how to bridge the gap between sets of separate forecasts from NWP models and the 'ideal' forecast for decision support.
We use Quantile Regression Forests to learn the error profile of each numerical model, and use these to apply empirically-derived probability distributions to forecasts.
Second, we combine these probabilistic forecasts using quantile averaging. Third, we interpolate between the aggregate quantiles in order to generate a full predictive distribution.
arXiv Detail & Related papers (2020-05-06T16:46:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.