Dual Correction Strategy for Ranking Distillation in Top-N Recommender System
- URL: http://arxiv.org/abs/2109.03459v4
- Date: Wed, 15 May 2024 05:24:19 GMT
- Title: Dual Correction Strategy for Ranking Distillation in Top-N Recommender System
- Authors: Youngjune Lee, Kee-Eung Kim,
- Abstract summary: This paper presents Dual Correction strategy for Knowledge Distillation (DCD)
DCD transfers the ranking information from the teacher model to the student model in a more efficient manner.
Our experiments show that the proposed method outperforms the state-of-the-art baselines.
- Score: 22.37864671297929
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge Distillation (KD), which transfers the knowledge of a well-trained large model (teacher) to a small model (student), has become an important area of research for practical deployment of recommender systems. Recently, Relaxed Ranking Distillation (RRD) has shown that distilling the ranking information in the recommendation list significantly improves the performance. However, the method still has limitations in that 1) it does not fully utilize the prediction errors of the student model, which makes the training not fully efficient, and 2) it only distills the user-side ranking information, which provides an insufficient view under the sparse implicit feedback. This paper presents Dual Correction strategy for Distillation (DCD), which transfers the ranking information from the teacher model to the student model in a more efficient manner. Most importantly, DCD uses the discrepancy between the teacher model and the student model predictions to decide which knowledge to be distilled. By doing so, DCD essentially provides the learning guidance tailored to "correcting" what the student model has failed to accurately predict. This process is applied for transferring the ranking information from the user-side as well as the item-side to address sparse implicit user feedback. Our experiments show that the proposed method outperforms the state-of-the-art baselines, and ablation studies validate the effectiveness of each component.
Related papers
- Adaptive Explicit Knowledge Transfer for Knowledge Distillation [17.739979156009696]
We show that the performance of logit-based knowledge distillation can be improved by effectively delivering the probability distribution for the non-target classes from the teacher model.
We propose a new loss that enables the student to learn explicit knowledge along with implicit knowledge in an adaptive manner.
Experimental results demonstrate that the proposed method, called adaptive explicit knowledge transfer (AEKT) method, achieves improved performance compared to the state-of-the-art KD methods.
arXiv Detail & Related papers (2024-09-03T07:42:59Z) - Relative Difficulty Distillation for Semantic Segmentation [54.76143187709987]
We propose a pixel-level KD paradigm for semantic segmentation named Relative Difficulty Distillation (RDD)
RDD allows the teacher network to provide effective guidance on learning focus without additional optimization goals.
Our research showcases that RDD can integrate with existing KD methods to improve their upper performance bound.
arXiv Detail & Related papers (2024-07-04T08:08:25Z) - Improve Knowledge Distillation via Label Revision and Data Selection [37.74822443555646]
This paper proposes to rectify the teacher's inaccurate predictions using the ground truth.
In the latter, we introduce a data selection technique to choose suitable training samples to be supervised by the teacher.
Experiment results demonstrate the effectiveness of our proposed method, and show that our method can be combined with other distillation approaches.
arXiv Detail & Related papers (2024-04-03T02:41:16Z) - Knowledge Diffusion for Distillation [53.908314960324915]
The representation gap between teacher and student is an emerging topic in knowledge distillation (KD)
We state that the essence of these methods is to discard the noisy information and distill the valuable information in the feature.
We propose a novel KD method dubbed DiffKD, to explicitly denoise and match features using diffusion models.
arXiv Detail & Related papers (2023-05-25T04:49:34Z) - Unbiased Knowledge Distillation for Recommendation [66.82575287129728]
Knowledge distillation (KD) has been applied in recommender systems (RS) to reduce inference latency.
Traditional solutions first train a full teacher model from the training data, and then transfer its knowledge to supervise the learning of a compact student model.
We find such a standard distillation paradigm would incur serious bias issue -- popular items are more heavily recommended after the distillation.
arXiv Detail & Related papers (2022-11-27T05:14:03Z) - Exploring Inconsistent Knowledge Distillation for Object Detection with
Data Augmentation [66.25738680429463]
Knowledge Distillation (KD) for object detection aims to train a compact detector by transferring knowledge from a teacher model.
We propose inconsistent knowledge distillation (IKD) which aims to distill knowledge inherent in the teacher model's counter-intuitive perceptions.
Our method outperforms state-of-the-art KD baselines on one-stage, two-stage and anchor-free object detectors.
arXiv Detail & Related papers (2022-09-20T16:36:28Z) - Better Teacher Better Student: Dynamic Prior Knowledge for Knowledge
Distillation [70.92135839545314]
We propose the dynamic prior knowledge (DPK), which integrates part of teacher's features as the prior knowledge before the feature distillation.
Our DPK makes the performance of the student model positively correlated with that of the teacher model, which means that we can further boost the accuracy of students by applying larger teachers.
arXiv Detail & Related papers (2022-06-13T11:52:13Z) - Adaptive Instance Distillation for Object Detection in Autonomous
Driving [3.236217153362305]
We propose Adaptive Instance Distillation (AID) to selectively impart teacher's knowledge to the student to improve the performance of knowledge distillation.
Our AID is also shown to be useful for self-distillation to improve the teacher model's performance.
arXiv Detail & Related papers (2022-01-26T18:06:33Z) - DE-RRD: A Knowledge Distillation Framework for Recommender System [16.62204445256007]
We propose a knowledge distillation framework for recommender system, called DE-RRD.
It enables the student model to learn from the latent knowledge encoded in the teacher model as well as from the teacher's predictions.
Our experiments show that DE-RRD outperforms the state-of-the-art competitors and achieves comparable or even better performance to that of the teacher model with faster inference time.
arXiv Detail & Related papers (2020-12-08T11:09:22Z) - Distilling Object Detectors with Task Adaptive Regularization [97.52935611385179]
Current state-of-the-art object detectors are at the expense of high computational costs and are hard to deploy to low-end devices.
Knowledge distillation, which aims at training a smaller student network by transferring knowledge from a larger teacher model, is one of the promising solutions for model miniaturization.
arXiv Detail & Related papers (2020-06-23T15:58:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.