Adaptive Explicit Knowledge Transfer for Knowledge Distillation
- URL: http://arxiv.org/abs/2409.01679v2
- Date: Thu, 5 Sep 2024 07:44:14 GMT
- Title: Adaptive Explicit Knowledge Transfer for Knowledge Distillation
- Authors: Hyungkeun Park, Jong-Seok Lee,
- Abstract summary: We show that the performance of logit-based knowledge distillation can be improved by effectively delivering the probability distribution for the non-target classes from the teacher model.
We propose a new loss that enables the student to learn explicit knowledge along with implicit knowledge in an adaptive manner.
Experimental results demonstrate that the proposed method, called adaptive explicit knowledge transfer (AEKT) method, achieves improved performance compared to the state-of-the-art KD methods.
- Score: 17.739979156009696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Logit-based knowledge distillation (KD) for classification is cost-efficient compared to feature-based KD but often subject to inferior performance. Recently, it was shown that the performance of logit-based KD can be improved by effectively delivering the probability distribution for the non-target classes from the teacher model, which is known as `implicit (dark) knowledge', to the student model. Through gradient analysis, we first show that this actually has an effect of adaptively controlling the learning of implicit knowledge. Then, we propose a new loss that enables the student to learn explicit knowledge (i.e., the teacher's confidence about the target class) along with implicit knowledge in an adaptive manner. Furthermore, we propose to separate the classification and distillation tasks for effective distillation and inter-class relationship modeling. Experimental results demonstrate that the proposed method, called adaptive explicit knowledge transfer (AEKT) method, achieves improved performance compared to the state-of-the-art KD methods on the CIFAR-100 and ImageNet datasets.
Related papers
- Teaching with Uncertainty: Unleashing the Potential of Knowledge Distillation in Object Detection [47.0507287491627]
We propose a novel feature-based distillation paradigm with knowledge uncertainty for object detection.
By leveraging the Monte Carlo dropout technique, we introduce knowledge uncertainty into the training process of the student model.
Our method performs effectively during the KD process without requiring intricate structures or extensive computational resources.
arXiv Detail & Related papers (2024-06-11T06:51:02Z) - Robustness-Reinforced Knowledge Distillation with Correlation Distance
and Network Pruning [3.1423836318272773]
Knowledge distillation (KD) improves the performance of efficient and lightweight models.
Most existing KD techniques rely on Kullback-Leibler (KL) divergence.
We propose a Robustness-Reinforced Knowledge Distillation (R2KD) that leverages correlation distance and network pruning.
arXiv Detail & Related papers (2023-11-23T11:34:48Z) - Comparative Knowledge Distillation [102.35425896967791]
Traditional Knowledge Distillation (KD) assumes readily available access to teacher models for frequent inference.
We propose Comparative Knowledge Distillation (CKD), which encourages student models to understand the nuanced differences in a teacher model's interpretations of samples.
CKD consistently outperforms state of the art data augmentation and KD techniques.
arXiv Detail & Related papers (2023-11-03T21:55:33Z) - Knowledge Distillation via Token-level Relationship Graph [12.356770685214498]
We propose a novel method called Knowledge Distillation with Token-level Relationship Graph (TRG)
By employing TRG, the student model can effectively emulate higher-level semantic information from the teacher model.
We conduct experiments to evaluate the effectiveness of the proposed method against several state-of-the-art approaches.
arXiv Detail & Related papers (2023-06-20T08:16:37Z) - Hint-dynamic Knowledge Distillation [30.40008256306688]
Hint-dynamic Knowledge Distillation, dubbed HKD, excavates the knowledge from the teacher's hints in a dynamic scheme.
A meta-weight network is introduced to generate the instance-wise weight coefficients about knowledge hints.
Experiments on standard benchmarks of CIFAR-100 and Tiny-ImageNet manifest that the proposed HKD well boost the effect of knowledge distillation tasks.
arXiv Detail & Related papers (2022-11-30T15:03:53Z) - Class-aware Information for Logit-based Knowledge Distillation [16.634819319915923]
We propose a Class-aware Logit Knowledge Distillation (CLKD) method, that extents the logit distillation in both instance-level and class-level.
CLKD enables the student model mimic higher semantic information from the teacher model, hence improving the distillation performance.
arXiv Detail & Related papers (2022-11-27T09:27:50Z) - Exploring Inconsistent Knowledge Distillation for Object Detection with
Data Augmentation [66.25738680429463]
Knowledge Distillation (KD) for object detection aims to train a compact detector by transferring knowledge from a teacher model.
We propose inconsistent knowledge distillation (IKD) which aims to distill knowledge inherent in the teacher model's counter-intuitive perceptions.
Our method outperforms state-of-the-art KD baselines on one-stage, two-stage and anchor-free object detectors.
arXiv Detail & Related papers (2022-09-20T16:36:28Z) - A Closer Look at Knowledge Distillation with Features, Logits, and
Gradients [81.39206923719455]
Knowledge distillation (KD) is a substantial strategy for transferring learned knowledge from one neural network model to another.
This work provides a new perspective to motivate a set of knowledge distillation strategies by approximating the classical KL-divergence criteria with different knowledge sources.
Our analysis indicates that logits are generally a more efficient knowledge source and suggests that having sufficient feature dimensions is crucial for the model design.
arXiv Detail & Related papers (2022-03-18T21:26:55Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
Online Self-Acquired Knowledge Distillation (OSAKD) is proposed, aiming to improve the performance of any deep neural model in an online manner.
We utilize k-nn non-parametric density estimation technique for estimating the unknown probability distributions of the data samples in the output feature space.
arXiv Detail & Related papers (2021-08-26T14:01:04Z) - Knowledge Distillation Thrives on Data Augmentation [65.58705111863814]
Knowledge distillation (KD) is a general deep neural network training framework that uses a teacher model to guide a student model.
Many works have explored the rationale for its success, however, its interplay with data augmentation (DA) has not been well recognized so far.
In this paper, we are motivated by an interesting observation in classification: KD loss can benefit from extended training iterations while the cross-entropy loss does not.
We show this disparity arises because of data augmentation: KD loss can tap into the extra information from different input views brought by DA.
arXiv Detail & Related papers (2020-12-05T00:32:04Z) - Residual Knowledge Distillation [96.18815134719975]
This work proposes Residual Knowledge Distillation (RKD), which further distills the knowledge by introducing an assistant (A)
In this way, S is trained to mimic the feature maps of T, and A aids this process by learning the residual error between them.
Experiments show that our approach achieves appealing results on popular classification datasets, CIFAR-100 and ImageNet.
arXiv Detail & Related papers (2020-02-21T07:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.