論文の概要: A robust approach for deep neural networks in presence of label noise:
relabelling and filtering instances during training
- arxiv url: http://arxiv.org/abs/2109.03748v1
- Date: Wed, 8 Sep 2021 16:11:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-09 13:32:05.831379
- Title: A robust approach for deep neural networks in presence of label noise:
relabelling and filtering instances during training
- Title(参考訳): ラベルノイズの存在下でのディープニューラルネットワークに対するロバストなアプローチ--トレーニング中のリラベリングとフィルタリングインスタンス
- Authors: Anabel G\'omez-R\'ios, Juli\'an Luengo, Francisco Herrera
- Abstract要約: 我々は、任意のCNNで使用できるRAFNIと呼ばれるラベルノイズに対する堅牢なトレーニング戦略を提案する。
RAFNIは、インスタンスをフィルタリングする2つのメカニズムと、インスタンスをリラベルする1つのメカニズムからなる。
いくつかのサイズと特徴の異なるデータセットを用いて,本アルゴリズムの評価を行った。
- 参考スコア(独自算出の注目度): 14.244244290954084
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning has outperformed other machine learning algorithms in a variety
of tasks, and as a result, it has become more and more popular and used.
However, as other machine learning algorithms, deep learning, and convolutional
neural networks (CNNs) in particular, perform worse when the data sets present
label noise. Therefore, it is important to develop algorithms that help the
training of deep networks and their generalization to noise-free test sets. In
this paper, we propose a robust training strategy against label noise, called
RAFNI, that can be used with any CNN. This algorithm filters and relabels
instances of the training set based on the predictions and their probabilities
made by the backbone neural network during the training process. That way, this
algorithm improves the generalization ability of the CNN on its own. RAFNI
consists of three mechanisms: two mechanisms that filter instances and one
mechanism that relabels instances. In addition, it does not suppose that the
noise rate is known nor does it need to be estimated. We evaluated our
algorithm using different data sets of several sizes and characteristics. We
also compared it with state-of-the-art models using the CIFAR10 and CIFAR100
benchmarks under different types and rates of label noise and found that RAFNI
achieves better results in most cases.
- Abstract(参考訳): ディープラーニングは、さまざまなタスクにおいて、他の機械学習アルゴリズムよりも優れており、その結果、ますます人気を博し、使われている。
しかし、他の機械学習アルゴリズム、ディープラーニング、および畳み込みニューラルネットワーク(CNN)のように、データセットがラベルノイズを示すと、さらに悪化する。
したがって、ディープネットワークのトレーニングとノイズフリーテストセットへの一般化を支援するアルゴリズムを開発することが重要である。
本稿では,任意のCNNで使用可能なRAFNIと呼ばれるラベルノイズに対する堅牢なトレーニング戦略を提案する。
このアルゴリズムは、トレーニングプロセス中にバックボーンニューラルネットワークが生成した予測と確率に基づいて、トレーニングセットのインスタンスをフィルタリングし、リラベルする。
このようにして、このアルゴリズムは独自のCNNの一般化能力を向上させる。
RAFNIは、インスタンスをフィルタリングする2つのメカニズムと、インスタンスをリラベルする1つのメカニズムからなる。
さらに、ノイズレートが知られていても、見積もる必要もないと仮定する。
複数のサイズと特性の異なるデータセットを用いてアルゴリズムを評価した。
また, CIFAR10 と CIFAR100 のベンチマークをラベルノイズの種類や速度で比較したところ, RAFNI はほとんどの場合, 良好な結果が得られることがわかった。
関連論文リスト
- Training Convolutional Neural Networks with the Forward-Forward
algorithm [1.74440662023704]
Forward Forward (FF)アルゴリズムは、現在まで完全に接続されたネットワークでしか使われていない。
FFパラダイムをCNNに拡張する方法を示す。
我々のFF学習したCNNは、空間的に拡張された新しいラベリング手法を特徴とし、MNISTの手書き桁データセットにおいて99.16%の分類精度を実現している。
論文 参考訳(メタデータ) (2023-12-22T18:56:35Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Wide and Deep Neural Networks Achieve Optimality for Classification [23.738242876364865]
我々は、最適性を達成するニューラルネットワーク分類器の明示的な集合を同定し、構築する。
特に、最適性を実現するネットワーク構築に使用できる明示的なアクティベーション関数を提供する。
その結果,過度な深度が有害な回帰タスクとは対照的に,分類タスクにディープネットワークを使用することの利点が浮き彫りになった。
論文 参考訳(メタデータ) (2022-04-29T14:27:42Z) - Compare learning: bi-attention network for few-shot learning [6.559037166322981]
距離学習と呼ばれる数ショットの学習手法の1つは、画像のペアが同じカテゴリに属しているかどうかを判断するために、まず遠距離計量を学習することで、この課題に対処する。
本稿では, インスタンスの埋め込みの類似性を正確に, グローバルかつ効率的に測定できる, Bi-attention Network という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-25T07:39:10Z) - Synergistic Network Learning and Label Correction for Noise-robust Image
Classification [28.27739181560233]
ディープニューラルネットワーク(DNN)は、トレーニングラベルノイズに過度に適合する傾向があるため、実際のモデルパフォーマンスは低下する。
損失選択と雑音補正のアイデアを組み合わせたロバストなラベル補正フレームワークを提案する。
ノイズタイプやレートの異なる合成および実世界のデータセット上で,本手法を実証する。
論文 参考訳(メタデータ) (2022-02-27T23:06:31Z) - Learning with Neighbor Consistency for Noisy Labels [69.83857578836769]
特徴空間におけるトレーニング例間の類似性を利用した雑音ラベルから学習する手法を提案する。
合成(CIFAR-10, CIFAR-100)とリアル(mini-WebVision, Clothing1M, mini-ImageNet-Red)の両方のノイズを評価するデータセットの評価を行った。
論文 参考訳(メタデータ) (2022-02-04T15:46:27Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
本稿では,mipソルバの2つのキーサブタスクに学習を適用し,高品質なジョイント変数割当を生成し,その割当と最適課題との客観的値の差を限定する。
提案手法は,ニューラルネットワークに基づく2つのコンポーネントであるニューラルダイバーディングとニューラルブランチを構築し,SCIPなどのベースMIPソルバで使用する。
2つのGoogle生産データセットとMIPLIBを含む6つの現実世界データセットに対するアプローチを評価し、それぞれに別々のニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-12-23T09:33:11Z) - Attention-Aware Noisy Label Learning for Image Classification [97.26664962498887]
大規模ラベル付きサンプルで学習した深層畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンにおいて顕著な進歩を遂げている。
大量のラベル付きビジュアルデータを取得する最も安価な方法は、Flickrのようなユーザーが提供するラベルでウェブサイトからクロールすることである。
本稿では,潜在的なラベルノイズのあるデータセットに基づいて学習したネットワークの識別能力を向上させるために,注目に敏感なラベル学習手法を提案する。
論文 参考訳(メタデータ) (2020-09-30T15:45:36Z) - A Deep Neural Network for Audio Classification with a Classifier
Attention Mechanism [2.3204178451683264]
我々は、Audio-based Convolutional Neural Network (CAB-CNN)と呼ばれる新しいアテンションベースニューラルネットワークアーキテクチャを導入する。
このアルゴリズムは、単純な分類器のリストと、セレクタとしてアテンションメカニズムからなる、新しく設計されたアーキテクチャを使用する。
我々のアルゴリズムは最先端のアルゴリズムと比較して、選択したテストスコアに対して10%以上の改善を達成している。
論文 参考訳(メタデータ) (2020-06-14T21:29:44Z) - Learning with Out-of-Distribution Data for Audio Classification [60.48251022280506]
我々は,OODインスタンスを破棄するよりも,特定のOODインスタンスを検出・復号化することで,学習に肯定的な影響を及ぼすことを示す。
提案手法は,畳み込みニューラルネットワークの性能を著しく向上させる。
論文 参考訳(メタデータ) (2020-02-11T21:08:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。