A robust approach for deep neural networks in presence of label noise:
relabelling and filtering instances during training
- URL: http://arxiv.org/abs/2109.03748v1
- Date: Wed, 8 Sep 2021 16:11:31 GMT
- Title: A robust approach for deep neural networks in presence of label noise:
relabelling and filtering instances during training
- Authors: Anabel G\'omez-R\'ios, Juli\'an Luengo, Francisco Herrera
- Abstract summary: We propose a robust training strategy against label noise, called RAFNI, that can be used with any CNN.
RAFNI consists of three mechanisms: two mechanisms that filter instances and one mechanism that relabels instances.
We evaluated our algorithm using different data sets of several sizes and characteristics.
- Score: 14.244244290954084
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning has outperformed other machine learning algorithms in a variety
of tasks, and as a result, it has become more and more popular and used.
However, as other machine learning algorithms, deep learning, and convolutional
neural networks (CNNs) in particular, perform worse when the data sets present
label noise. Therefore, it is important to develop algorithms that help the
training of deep networks and their generalization to noise-free test sets. In
this paper, we propose a robust training strategy against label noise, called
RAFNI, that can be used with any CNN. This algorithm filters and relabels
instances of the training set based on the predictions and their probabilities
made by the backbone neural network during the training process. That way, this
algorithm improves the generalization ability of the CNN on its own. RAFNI
consists of three mechanisms: two mechanisms that filter instances and one
mechanism that relabels instances. In addition, it does not suppose that the
noise rate is known nor does it need to be estimated. We evaluated our
algorithm using different data sets of several sizes and characteristics. We
also compared it with state-of-the-art models using the CIFAR10 and CIFAR100
benchmarks under different types and rates of label noise and found that RAFNI
achieves better results in most cases.
Related papers
- Training Convolutional Neural Networks with the Forward-Forward
algorithm [1.74440662023704]
Forward Forward (FF) algorithm has up to now only been used in fully connected networks.
We show how the FF paradigm can be extended to CNNs.
Our FF-trained CNN, featuring a novel spatially-extended labeling technique, achieves a classification accuracy of 99.16% on the MNIST hand-written digits dataset.
arXiv Detail & Related papers (2023-12-22T18:56:35Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Wide and Deep Neural Networks Achieve Optimality for Classification [23.738242876364865]
We identify and construct an explicit set of neural network classifiers that achieve optimality.
In particular, we provide explicit activation functions that can be used to construct networks that achieve optimality.
Our results highlight the benefit of using deep networks for classification tasks, in contrast to regression tasks, where excessive depth is harmful.
arXiv Detail & Related papers (2022-04-29T14:27:42Z) - Compare learning: bi-attention network for few-shot learning [6.559037166322981]
One of the Few-shot learning methods called metric learning addresses this challenge by first learning a deep distance metric to determine whether a pair of images belong to the same category.
In this paper, we propose a novel approach named Bi-attention network to compare the instances, which can measure the similarity between embeddings of instances precisely, globally and efficiently.
arXiv Detail & Related papers (2022-03-25T07:39:10Z) - Synergistic Network Learning and Label Correction for Noise-robust Image
Classification [28.27739181560233]
Deep Neural Networks (DNNs) tend to overfit training label noise, resulting in poorer model performance in practice.
We propose a robust label correction framework combining the ideas of small loss selection and noise correction.
We demonstrate our method on both synthetic and real-world datasets with different noise types and rates.
arXiv Detail & Related papers (2022-02-27T23:06:31Z) - Learning with Neighbor Consistency for Noisy Labels [69.83857578836769]
We present a method for learning from noisy labels that leverages similarities between training examples in feature space.
We evaluate our method on datasets evaluating both synthetic (CIFAR-10, CIFAR-100) and realistic (mini-WebVision, Clothing1M, mini-ImageNet-Red) noise.
arXiv Detail & Related papers (2022-02-04T15:46:27Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
This paper applies learning to the two key sub-tasks of a MIP solver, generating a high-quality joint variable assignment, and bounding the gap in objective value between that assignment and an optimal one.
Our approach constructs two corresponding neural network-based components, Neural Diving and Neural Branching, to use in a base MIP solver such as SCIP.
We evaluate our approach on six diverse real-world datasets, including two Google production datasets and MIPLIB, by training separate neural networks on each.
arXiv Detail & Related papers (2020-12-23T09:33:11Z) - Attention-Aware Noisy Label Learning for Image Classification [97.26664962498887]
Deep convolutional neural networks (CNNs) learned on large-scale labeled samples have achieved remarkable progress in computer vision.
The cheapest way to obtain a large body of labeled visual data is to crawl from websites with user-supplied labels, such as Flickr.
This paper proposes the attention-aware noisy label learning approach to improve the discriminative capability of the network trained on datasets with potential label noise.
arXiv Detail & Related papers (2020-09-30T15:45:36Z) - A Deep Neural Network for Audio Classification with a Classifier
Attention Mechanism [2.3204178451683264]
We introduce a new attention-based neural network architecture called Audio-Based Convolutional Neural Network (CAB-CNN)
The algorithm uses a newly designed architecture consisting of a list of simple classifiers and an attention mechanism as a selector.
Compared to the state-of-the-art algorithms, our algorithm achieves more than 10% improvements on all selected test scores.
arXiv Detail & Related papers (2020-06-14T21:29:44Z) - Learning with Out-of-Distribution Data for Audio Classification [60.48251022280506]
We show that detecting and relabelling certain OOD instances, rather than discarding them, can have a positive effect on learning.
The proposed method is shown to improve the performance of convolutional neural networks by a significant margin.
arXiv Detail & Related papers (2020-02-11T21:08:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.