Training Algorithm Matters for the Performance of Neural Network
Potential
- URL: http://arxiv.org/abs/2109.03769v1
- Date: Wed, 8 Sep 2021 16:48:33 GMT
- Title: Training Algorithm Matters for the Performance of Neural Network
Potential
- Authors: Yunqi Shao, Florian M. Dietrich, Carl Nettelblad, Chao Zhang
- Abstract summary: We compare the performance of two popular training algorithms, the adaptive moment estimation algorithm (Adam) and the extended Kalman filter algorithm (EKF)
It is found that NNPs trained with EKF are more transferable and less sensitive to the value of the learning rate, as compared to Adam.
- Score: 4.774810604472842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One hidden yet important issue for developing neural network potentials
(NNPs) is the choice of training algorithm. Here we compare the performance of
two popular training algorithms, the adaptive moment estimation algorithm
(Adam) and the extended Kalman filter algorithm (EKF), using the
Behler-Parrinello neural network (BPNN) and two publicly accessible datasets of
liquid water. It is found that NNPs trained with EKF are more transferable and
less sensitive to the value of the learning rate, as compared to Adam. In both
cases, error metrics of the test set do not always serve as a good indicator
for the actual performance of NNPs. Instead, we show that their performance
correlates well with a Fisher information based similarity measure.
Related papers
- Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection.
We show that SNNs trained with dynamic sparse training (DST) algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
arXiv Detail & Related papers (2024-08-08T16:48:33Z) - Efficient Deep Learning with Decorrelated Backpropagation [1.9731499060686393]
We show for the first time that much more efficient training of very deep neural networks using decorrelated backpropagation is feasible.
We obtain a more than two-fold speed-up and higher test accuracy compared to backpropagation when training a 18-layer deep residual network.
arXiv Detail & Related papers (2024-05-03T17:21:13Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - NP-Match: When Neural Processes meet Semi-Supervised Learning [133.009621275051]
Semi-supervised learning (SSL) has been widely explored in recent years, and it is an effective way of leveraging unlabeled data to reduce the reliance on labeled data.
In this work, we adjust neural processes (NPs) to the semi-supervised image classification task, resulting in a new method named NP-Match.
arXiv Detail & Related papers (2022-07-03T15:24:31Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Implementing a foveal-pit inspired filter in a Spiking Convolutional
Neural Network: a preliminary study [0.0]
We have presented a Spiking Convolutional Neural Network (SCNN) that incorporates retinal foveal-pit inspired Difference of Gaussian filters and rank-order encoding.
The model is trained using a variant of the backpropagation algorithm adapted to work with spiking neurons, as implemented in the Nengo library.
The network has achieved up to 90% accuracy, where loss is calculated using the cross-entropy function.
arXiv Detail & Related papers (2021-05-29T15:28:30Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI) algorithm was shown to be a viable and scalable alternative to backpropagation for shallow fully-connected neural networks.
We are demonstrating how TAGI matches or exceeds the performance of backpropagation, for training classic deep neural network architectures.
arXiv Detail & Related papers (2021-03-09T14:51:34Z) - A Neural Network Approach for Online Nonlinear Neyman-Pearson
Classification [3.6144103736375857]
We propose a novel Neyman-Pearson (NP) classifier that is both online and nonlinear as the first time in the literature.
The proposed classifier operates on a binary labeled data stream in an online manner, and maximizes the detection power about a user-specified and controllable false positive rate.
Our algorithm is appropriate for large scale data applications and provides a decent false positive rate controllability with real time processing.
arXiv Detail & Related papers (2020-06-14T20:00:25Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.