論文の概要: Desiderata for Representation Learning: A Causal Perspective
- arxiv url: http://arxiv.org/abs/2109.03795v1
- Date: Wed, 8 Sep 2021 17:33:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-09 13:55:18.849585
- Title: Desiderata for Representation Learning: A Causal Perspective
- Title(参考訳): 表象学習のためのデシデラタ:因果的視点
- Authors: Yixin Wang, Michael I. Jordan
- Abstract要約: 我々は表現学習の因果的視点を採り、非純粋性と効率性(教師なし表現学習)と非教師なし表現学習(教師なし表現学習)を定式化する。
これは、関心のデシダータを満たす程度を計算可能なメトリクスで評価し、単一の観測データセットから不純物や不整合表現を学習する。
- 参考スコア(独自算出の注目度): 104.3711759578494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representation learning constructs low-dimensional representations to
summarize essential features of high-dimensional data. This learning problem is
often approached by describing various desiderata associated with learned
representations; e.g., that they be non-spurious, efficient, or disentangled.
It can be challenging, however, to turn these intuitive desiderata into formal
criteria that can be measured and enhanced based on observed data. In this
paper, we take a causal perspective on representation learning, formalizing
non-spuriousness and efficiency (in supervised representation learning) and
disentanglement (in unsupervised representation learning) using counterfactual
quantities and observable consequences of causal assertions. This yields
computable metrics that can be used to assess the degree to which
representations satisfy the desiderata of interest and learn non-spurious and
disentangled representations from single observational datasets.
- Abstract(参考訳): 表現学習は高次元データの基本的な特徴を要約するために低次元表現を構成する。
この学習問題は、学習表現に関連する様々なデシラタを記述することで、しばしばアプローチされる。
しかし、これらの直感的なデシデラタを観測データに基づいて測定および拡張可能な形式的な基準に変換することは困難である。
本稿では,非純粋性と効率性(教師なし表現学習)と非教師なし表現学習(教師なし表現学習)の因果的視点を,因果的主張の反事実量と観測可能な結果を用いて定式化する。
これにより、関心のデシデラタを満たす表現の程度を評価し、単一の観測データセットから非純正で不連続な表現を学ぶのに使用できる計算可能なメトリクスが得られる。
関連論文リスト
- Specify Robust Causal Representation from Mixed Observations [35.387451486213344]
観測から純粋に表現を学習することは、予測モデルに有利な低次元のコンパクトな表現を学習する問題を懸念する。
本研究では,観測データからこのような表現を学習するための学習手法を開発した。
理論的および実験的に、学習された因果表現で訓練されたモデルは、敵の攻撃や分布シフトの下でより堅牢であることを示す。
論文 参考訳(メタデータ) (2023-10-21T02:18:35Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
解釈可能性の欠如、堅牢性、分布外一般化が、既存の視覚モデルの課題となっている。
人間レベルのエージェントの強い推論能力にインスパイアされた近年では、因果推論パラダイムの開発に多大な努力が注がれている。
本稿では,この新興分野を包括的に概観し,注目し,議論を奨励し,新たな因果推論手法の開発の急激さを先導することを目的とする。
論文 参考訳(メタデータ) (2022-04-26T02:22:28Z) - RELAX: Representation Learning Explainability [10.831313203043514]
本稿では、帰属に基づく表現の説明のための最初のアプローチであるRELAXを提案する。
ReLAXは、入力とマスクアウトされた自身のバージョンの間の表現空間における類似性を測定することで表現を説明する。
我々はRELAXの理論的解釈を提供し、教師なし学習を用いて訓練された特徴抽出器を新規に解析する。
論文 参考訳(メタデータ) (2021-12-19T14:51:31Z) - A Tutorial on Learning Disentangled Representations in the Imaging
Domain [13.320565017546985]
汎用表現学習のアプローチとして, 遠方表現学習が提案されている。
適切な汎用表現は、控えめな量のデータを使用して、新しいターゲットタスクに対して容易に微調整できる。
解離表現はモデル説明可能性を提供し、変動要因の根底にある因果関係を理解するのに役立つ。
論文 参考訳(メタデータ) (2021-08-26T21:44:10Z) - Which Mutual-Information Representation Learning Objectives are
Sufficient for Control? [80.2534918595143]
相互情報は、データの表現を学習するために魅力的な形式を提供する。
本稿では,最適政策の学習と表現のための状態表現の十分性について定式化する。
意外なことに、これらの2つの目的は、MDPの構造に関する軽度で一般的な仮定を前提に、不十分な表現をもたらす可能性がある。
論文 参考訳(メタデータ) (2021-06-14T10:12:34Z) - Odd-One-Out Representation Learning [1.6822770693792826]
ランダム・ワン・アウト観測に基づく下流の弱教師付きタスクがモデル選択に適していることを示す。
また,この課題を高度に遂行する,目覚しいメトリック学習型VAEモデルが,他の標準の教師なしおよび弱教師付きアンタングルメントモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-14T22:01:15Z) - A Sober Look at the Unsupervised Learning of Disentangled
Representations and their Evaluation [63.042651834453544]
モデルとデータの両方に帰納的バイアスを伴わずに,非教師なしの非教師付き表現学習は不可能であることを示す。
異なる手法は、対応する損失によって「強化」された特性を効果的に強制するが、よく見分けられたモデルは監督なしでは特定できないように見える。
以上の結果から,遠絡学習における今後の研究は,帰納的バイアスと(単純に)監督の役割を明確化すべきであることが示唆された。
論文 参考訳(メタデータ) (2020-10-27T10:17:15Z) - Explainable Recommender Systems via Resolving Learning Representations [57.24565012731325]
説明はユーザー体験を改善し、システムの欠陥を発見するのに役立つ。
本稿では,表現学習プロセスの透明性を向上させることによって,説明可能な新しい推薦モデルを提案する。
論文 参考訳(メタデータ) (2020-08-21T05:30:48Z) - Interpretable Representations in Explainable AI: From Theory to Practice [7.031336702345381]
解釈可能な表現は、ブラックボックス予測システムをターゲットにした多くの説明器のバックボーンである。
人間の理解可能な概念の存在と欠如をエンコードする解釈可能な表現の特性について検討する。
論文 参考訳(メタデータ) (2020-08-16T21:44:03Z) - Weakly-Supervised Disentanglement Without Compromises [53.55580957483103]
インテリジェントエージェントは、環境の変化を観察することで、有用な表現を学べるべきである。
変動の要因の少なくとも1つを共有する非I.d.画像のペアとしてそのような観測をモデル化する。
我々は,どの因子が変化したかのみを知るだけで,非絡み合った表現を学ぶのに十分であることを示す。
論文 参考訳(メタデータ) (2020-02-07T16:39:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。