Towards Fully Automated Segmentation of Rat Cardiac MRI by Leveraging
Deep Learning Frameworks
- URL: http://arxiv.org/abs/2109.04188v1
- Date: Thu, 9 Sep 2021 11:48:50 GMT
- Title: Towards Fully Automated Segmentation of Rat Cardiac MRI by Leveraging
Deep Learning Frameworks
- Authors: Daniel Fernandez-Llaneza, Andrea Gondova, Harris Vince, Arijit Patra,
Magdalena Zurek, Peter Konings, Patrik Kagelid, Leif Hultin
- Abstract summary: We develop segmentation models that expand on the standard U-Net architecture and evaluate separate models for systole and diastole phases.
Applying Gaussian Processes to 1MSA allows to automate the selection of systole and diastole phases.
- Score: 1.6020567943077142
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automated segmentation of human cardiac magnetic resonance datasets has been
steadily improving during recent years. However, these methods are not directly
applicable in preclinical context due to limited datasets and lower image
resolution. Successful application of deep architectures for rat cardiac
segmentation, although of critical importance for preclinical evaluation of
cardiac function, has to our knowledge not yet been reported. We developed
segmentation models that expand on the standard U-Net architecture and
evaluated separate models for systole and diastole phases, 2MSA, and one model
for all timepoints, 1MSA. Furthermore, we calibrated model outputs using a
Gaussian Process (GP)-based prior to improve phase selection. Resulting models
approach human performance in terms of left ventricular segmentation quality
and ejection fraction (EF) estimation in both 1MSA and 2MSA settings
(S{\o}rensen-Dice score 0.91 +/- 0.072 and 0.93 +/- 0.032, respectively). 2MSA
achieved a mean absolute difference between estimated and reference EF of 3.5
+/- 2.5 %, while 1MSA resulted in 4.1 +/- 3.0 %. Applying Gaussian Processes to
1MSA allows to automate the selection of systole and diastole phases. Combined
with a novel cardiac phase selection strategy, our work presents an important
first step towards a fully automated segmentation pipeline in the context of
rat cardiac analysis.
Related papers
- A Compact LSTM-SVM Fusion Model for Long-Duration Cardiovascular
Diseases Detection [0.0]
Globally, cardiovascular diseases (CVDs) are the leading cause of mortality, accounting for an estimated 17.9 million deaths annually.
One critical clinical objective is the early detection of CVDs using electrocardiogram (ECG) data.
Recent advancements based on machine learning and deep learning have achieved great progress in this domain.
arXiv Detail & Related papers (2023-11-20T10:57:11Z) - Weakly supervised segmentation of intracranial aneurysms using a novel 3D focal modulation UNet [0.5106162890866905]
We propose FocalSegNet, a novel 3D focal modulation UNet, to detect an aneurysm and offer an initial, coarse segmentation of it from time-of-flight MRA image patches.
We trained and evaluated our model on a public dataset, and in terms of UIA detection, our model showed a low false-positive rate of 0.21 and a high sensitivity of 0.80.
arXiv Detail & Related papers (2023-08-06T03:28:08Z) - Application of the nnU-Net for automatic segmentation of lung lesion on
CT images, and implication on radiomic models [1.8231394717039833]
A deep-learning automatic segmentation method was applied on computed tomography images of non-small-cell lung cancer patients.
The use of manual vs automatic segmentation in the performance of survival radiomic models was assessed, as well.
arXiv Detail & Related papers (2022-09-24T15:04:23Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
We propose a novel approach for inter-patient ECG classification using a compact 1D Self-Organized Operational Neural Networks (Self-ONNs)
We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks.
Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved.
arXiv Detail & Related papers (2022-04-07T22:49:18Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - CondenseUNet: A Memory-Efficient Condensely-Connected Architecture for
Bi-ventricular Blood Pool and Myocardium Segmentation [0.0]
We propose a novel memory-efficient Convolutional Neural Network (CNN) architecture as a modification of both CondenseNet and DenseNet.
Our experiments show that the proposed architecture runs on the Automated Cardiac Diagnosis Challenge dataset.
arXiv Detail & Related papers (2020-04-05T16:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.