論文の概要: A distillation-based approach integrating continual learning and
federated learning for pervasive services
- arxiv url: http://arxiv.org/abs/2109.04197v1
- Date: Thu, 9 Sep 2021 12:09:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-10 14:17:12.272120
- Title: A distillation-based approach integrating continual learning and
federated learning for pervasive services
- Title(参考訳): 継続学習とフェデレート学習を統合した蒸留方式による普及型サービス
- Authors: Anastasiia Usmanova (INPG), Fran\c{c}ois Portet (GETALP), Philippe
Lalanda (M-PSI), German Vega (M-PSI)
- Abstract要約: 本稿では,フェデレート学習シナリオにおける破滅的な忘れ込みを扱う蒸留方式を提案する。
具体的には、人間活動認識タスクがデモドメインとして使用される。
- 参考スコア(独自算出の注目度): 0.3149883354098941
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning, a new machine learning paradigm enhancing the use of edge
devices, is receiving a lot of attention in the pervasive community to support
the development of smart services. Nevertheless, this approach still needs to
be adapted to the specificity of the pervasive domain. In particular, issues
related to continual learning need to be addressed. In this paper, we present a
distillation-based approach dealing with catastrophic forgetting in federated
learning scenario. Specifically, Human Activity Recognition tasks are used as a
demonstration domain.
- Abstract(参考訳): エッジデバイスの使用を促進する新しい機械学習パラダイムであるFederated Learningは、スマートサービスの開発を支援するために、広く普及しているコミュニティで注目を集めている。
それでも、このアプローチは広く普及するドメインの特異性に適応する必要がある。
特に、継続的な学習に関連する問題に対処する必要がある。
本稿では,フェデレート学習シナリオにおける破滅的忘れを取り扱う蒸留方式を提案する。
具体的には、人間活動認識タスクがデモドメインとして使用される。
関連論文リスト
- A Unified Framework for Continual Learning and Machine Unlearning [9.538733681436836]
継続的学習と機械学習は機械学習において重要な課題であり、通常は別々に対処される。
制御された知識蒸留を活用することによって,両課題に共同で取り組む新しい枠組みを導入する。
我々のアプローチは、最小限の忘れ込みと効果的な標的未学習で効率的な学習を可能にする。
論文 参考訳(メタデータ) (2024-08-21T06:49:59Z) - A Unified and General Framework for Continual Learning [58.72671755989431]
継続学習(CL)は、以前取得した知識を維持しながら、動的かつ変化するデータ分布から学ぶことに焦点を当てている。
正規化ベース、ベイズベース、メモリ再生ベースなど、破滅的な忘れ込みの課題に対処する様々な手法が開発されている。
本研究の目的は,既存の方法論を包含し,整理する包括的かつ包括的な枠組みを導入することで,このギャップを埋めることである。
論文 参考訳(メタデータ) (2024-03-20T02:21:44Z) - Subspace Distillation for Continual Learning [27.22147868163214]
本稿では,ニューラルネットワークの多様体構造を考慮した知識蒸留手法を提案する。
部分空間を用いたモデリングは、雑音に対するロバスト性など、いくつかの興味深い特性を提供することを示した。
実験により,提案手法は,いくつかの挑戦的データセットにおいて,様々な連続学習法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-07-31T05:59:09Z) - ALANNO: An Active Learning Annotation System for Mortals [0.0]
ALANNOは、アクティブラーニングを利用したNLPタスクのためのオープンソースのアノテーションシステムである。
アクティブな学習システムを展開する上での実践的な課題に焦点をあてる。
我々は、多くのアクティブな学習方法と基盤となる機械学習モデルで、このシステムをサポートしています。
論文 参考訳(メタデータ) (2022-11-11T14:19:41Z) - Learn what matters: cross-domain imitation learning with task-relevant
embeddings [77.34726150561087]
自律エージェントが、異なる環境や異なるエージェントなど、異なる領域のデモンストレーションからタスクを実行することを学習する方法について検討する。
我々は、追加のデモンストレーションやさらなるドメイン知識にアクセスすることなく、クロスドメインの模倣学習を可能にするスケーラブルなフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-24T21:56:58Z) - A Multi-label Continual Learning Framework to Scale Deep Learning
Approaches for Packaging Equipment Monitoring [57.5099555438223]
連続シナリオにおけるマルチラベル分類を初めて研究した。
タスク数に関して対数的複雑性を持つ効率的なアプローチを提案する。
我々は,包装業界における実世界のマルチラベル予測問題に対するアプローチを検証した。
論文 参考訳(メタデータ) (2022-08-08T15:58:39Z) - Lifelong Adaptive Machine Learning for Sensor-based Human Activity
Recognition Using Prototypical Networks [0.0]
連続学習は、生涯学習としても知られ、機械学習分野への関心が高まりつつある研究トピックである。
我々は,連続機械学習の分野における最近の進歩を基盤に,プロトタイプネットワーク(LPPNet-HAR)を用いた生涯適応型学習フレームワークを設計する。
LAPNet-HARは、タスクフリーなデータインクリメンタルな方法でセンサベースのデータストリームを処理する。
論文 参考訳(メタデータ) (2022-03-11T00:57:29Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
ディープニューラルネットワークは、新しいタスクを学んだ後、これまで学んだ知識の破滅的な忘れ込みに悩まされることが多い。
提案手法は、ドメインシフト中の新しいタスクを精度良く学習することで、DomainNetやOfficeHomeといった挑戦的なデータセットで最大10%向上する。
論文 参考訳(メタデータ) (2022-03-08T09:57:48Z) - Active Reinforcement Learning -- A Roadmap Towards Curious Classifier
Systems for Self-Adaptation [0.456877715768796]
知的システムにおける「能動的強化学習」についての研究課題を策定することを目的とする。
従来のアプローチでは、学習問題を分離し、さまざまな分野の機械学習からテクニックを分離的に利用している。
論文 参考訳(メタデータ) (2022-01-11T13:50:26Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
フェデレーションラーニングは、データを明示的に交換することなく、ローカルデータセットを保持する複数のエッジデバイスでモデルをトレーニングするための新しい機械学習パラダイムです。
本稿では、信号処理ツールを用いて扱うのが自然である主な課題をカプセル化し、強調する、連合学習のための統一的な体系的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-03-31T15:14:39Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
本稿では,マルチアクセスエッジコンピューティングサーバにおいて,複数のフェデレーション付き学習サービスの新たなモデルについて検討する。
共同資源最適化とハイパーラーニング率制御の問題,すなわちMS-FEDLを提案する。
シミュレーションの結果,提案アルゴリズムの収束性能を実証した。
論文 参考訳(メタデータ) (2020-11-25T01:29:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。