論文の概要: Translate & Fill: Improving Zero-Shot Multilingual Semantic Parsing with
Synthetic Data
- arxiv url: http://arxiv.org/abs/2109.04319v1
- Date: Thu, 9 Sep 2021 14:51:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-10 14:37:10.762400
- Title: Translate & Fill: Improving Zero-Shot Multilingual Semantic Parsing with
Synthetic Data
- Title(参考訳): Translate & Fill: 合成データによるゼロショット多言語意味解析の改善
- Authors: Massimo Nicosia, Zhongdi Qu and Yasemin Altun
- Abstract要約: 多言語セマンティックパーシングタスクのための銀のトレーニングデータを生成するための新しいTranslate-and-Fill(TaF)手法を提案する。
3つの多言語意味解析データセットの実験結果は、TaFによるデータ拡張が類似システムと競合する精度に達することを示している。
- 参考スコア(独自算出の注目度): 2.225882303328135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While multilingual pretrained language models (LMs) fine-tuned on a single
language have shown substantial cross-lingual task transfer capabilities, there
is still a wide performance gap in semantic parsing tasks when target language
supervision is available. In this paper, we propose a novel Translate-and-Fill
(TaF) method to produce silver training data for a multilingual semantic
parser. This method simplifies the popular Translate-Align-Project (TAP)
pipeline and consists of a sequence-to-sequence filler model that constructs a
full parse conditioned on an utterance and a view of the same parse. Our filler
is trained on English data only but can accurately complete instances in other
languages (i.e., translations of the English training utterances), in a
zero-shot fashion. Experimental results on three multilingual semantic parsing
datasets show that data augmentation with TaF reaches accuracies competitive
with similar systems which rely on traditional alignment techniques.
- Abstract(参考訳): 単一言語で微調整された多言語事前学習言語モデル(LM)は、言語間タスク転送能力がかなり高いが、ターゲット言語を監督できる場合、セマンティック解析タスクにおいて、依然として大きなパフォーマンス差がある。
本稿では,多言語意味解析のためのシルバートレーニングデータを生成するための新しいtaf(translate-and-fill)手法を提案する。
本手法は,TAP(Translate-Align-Project)パイプラインを単純化し,発話に条件付き全文パースと同一のパースビューを構築するシーケンス・ツー・シーケンス・フィラーモデルからなる。
我々のフィラーは英語のデータのみに基づいて訓練されているが、他の言語(英語の訓練発話の翻訳など)のインスタンスをゼロショットで正確に完了することができる。
3つの多言語意味解析データセットの実験結果から、従来のアライメント技術に依存する類似システムと競合するTaFによるデータ拡張が達成された。
関連論文リスト
- Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing [68.47787275021567]
言語間のセマンティックパーシングは、高いソース言語(例えば英語)から少ないトレーニングデータを持つ低リソース言語へのパーシング能力を伝達する。
そこで本稿では,最適輸送を用いた係り受け変数間の言語間相違を明示的に最小化することで,言語間セマンティック解析のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-09T04:52:31Z) - PEACH: Pre-Training Sequence-to-Sequence Multilingual Models for
Translation with Semi-Supervised Pseudo-Parallel Document Generation [5.004814662623874]
本稿では,多言語事前学習のための高品質な擬似並列データを生成する,新しい半教師付きSPDGを提案する。
実験の結果, PEACH はmT5 と mBART を様々な翻訳タスクで訓練する上で, 既存の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-03T18:19:26Z) - Bootstrapping Multilingual Semantic Parsers using Large Language Models [28.257114724384806]
複数の言語にまたがって英語データセットを転送するTranslation-trainパラダイムは、タスク固有の多言語モデルをトレーニングする上で重要な要素である。
本稿では,多言語意味解析の課題を考察し,英語データセットを複数言語に翻訳する大規模言語モデル(LLM)の有効性と柔軟性を示す。
論文 参考訳(メタデータ) (2022-10-13T19:34:14Z) - Meta-Learning a Cross-lingual Manifold for Semantic Parsing [75.26271012018861]
新しい言語をサポートするためにセマンティックをローカライズするには、効果的な言語間一般化が必要である。
本稿では,言語間移動において,最大サンプル効率で注釈付きセマンティックを学習するための一階メタ学習アルゴリズムを提案する。
ATIS上の6つの言語にまたがる結果は、ステップの組み合わせによって、各新言語におけるソーストレーニングデータの10パーセントを正確なセマンティクスでサンプリングできることを示している。
論文 参考訳(メタデータ) (2022-09-26T10:42:17Z) - Multilingual Neural Semantic Parsing for Low-Resourced Languages [1.6244541005112747]
英語,イタリア語,日本語の新しい多言語意味解析データセットを提案する。
本研究では,事前学習したエンコーダを用いた多言語学習がTOPデータセットのベースラインを大幅に上回ることを示す。
英語データのみに基づいて訓練されたセマンティクスは、イタリア語の文に対して44.9%の精度でゼロショットのパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-06-07T09:53:02Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
我々はTransformerエンコーダにクロスアテンションモジュールを挿入し、言語間の相互依存を明確に構築する。
独自の言語でコンテキストにのみ条件付けされたマスク付き単語の予測の退化を効果的に回避することができる。
提案した言語間モデルでは,XTREMEベンチマークのさまざまな言語間理解タスクに対して,最先端の新たな結果が提供される。
論文 参考訳(メタデータ) (2020-10-30T03:41:38Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
外部リソースを使わずに言語間で単語レベルの表現と文レベルの表現を整列する正規化手法を提案する。
言語間言語理解タスクの実験により、我々のモデルは、数ショットとゼロショットの両方のシナリオにおいて、最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-09-30T08:56:53Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z) - Bootstrapping a Crosslingual Semantic Parser [74.99223099702157]
我々は、英語のような単一の言語で訓練された意味を、最小限のアノテーションで新しい言語や複数のドメインに適用する。
我々は、機械翻訳がトレーニングデータの適切な代用であるかどうかを問うとともに、英語、パラフレーズ、多言語事前学習モデルとの併用トレーニングを用いて、ブートストラップを調査するように拡張する。
論文 参考訳(メタデータ) (2020-04-06T12:05:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。