Assessing Machine Learning Approaches to Address IoT Sensor Drift
- URL: http://arxiv.org/abs/2109.04356v1
- Date: Thu, 2 Sep 2021 19:15:31 GMT
- Title: Assessing Machine Learning Approaches to Address IoT Sensor Drift
- Authors: Haining Zheng and Antonio Paiva
- Abstract summary: We study and test several approaches with regard to their ability to cope with and adapt to sensor drift under realistic conditions.
Most of these approaches are recent and thus are representative of the current state-of-the-art.
The results show substantial drops in sensing performance due to sensor drift in spite of the approaches.
- Score: 0.15229257192293197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of IoT sensors and their deployment in various industries
and applications has brought about numerous analysis opportunities in this Big
Data era. However, drift of those sensor measurements poses major challenges to
automate data analysis and the ability to effectively train and deploy models
on a continuous basis. In this paper we study and test several approaches from
the literature with regard to their ability to cope with and adapt to sensor
drift under realistic conditions. Most of these approaches are recent and thus
are representative of the current state-of-the-art. The testing was performed
on a publicly available gas sensor dataset exhibiting drift over time. The
results show substantial drops in sensing performance due to sensor drift in
spite of the approaches. We then discuss several issues identified with current
approaches and outline directions for future research to tackle them.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Increasing the Robustness of Model Predictions to Missing Sensors in Earth Observation [5.143097874851516]
We study two novel methods tailored for multi-sensor scenarios, namely Input Sensor Dropout (ISensD) and Ensemble Sensor Invariant (ESensI)
We demonstrate that these methods effectively increase the robustness of model predictions to missing sensors.
We observe that ensemble multi-sensor models are the most robust to the lack of sensors.
arXiv Detail & Related papers (2024-07-22T09:58:29Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
Road traffic forecasting plays a critical role in smart city initiatives and has experienced significant advancements thanks to the power of deep learning.
However, the promising results achieved on current public datasets may not be applicable to practical scenarios.
We introduce the LargeST benchmark dataset, which includes a total of 8,600 sensors in California with a 5-year time coverage.
arXiv Detail & Related papers (2023-06-14T05:48:36Z) - On the Importance of Accurate Geometry Data for Dense 3D Vision Tasks [61.74608497496841]
Training on inaccurate or corrupt data induces model bias and hampers generalisation capabilities.
This paper investigates the effect of sensor errors for the dense 3D vision tasks of depth estimation and reconstruction.
arXiv Detail & Related papers (2023-03-26T22:32:44Z) - SECOE: Alleviating Sensors Failure in Machine Learning-Coupled IoT
Systems [0.0]
This paper proposes SECOE, a proactive approach for alleviating potentially simultaneous sensor failures.
SECOE includes a novel technique to minimize the number of models in the ensemble by harnessing the correlations among sensors.
Experiments reveal that SECOE effectively preserves prediction accuracy in the presence of sensor failures.
arXiv Detail & Related papers (2022-10-05T10:58:39Z) - Learning Online Multi-Sensor Depth Fusion [100.84519175539378]
SenFuNet is a depth fusion approach that learns sensor-specific noise and outlier statistics.
We conduct experiments with various sensor combinations on the real-world CoRBS and Scene3D datasets.
arXiv Detail & Related papers (2022-04-07T10:45:32Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
Autoencoders are unsupervised models which have been used for detecting anomalies in multi-sensor environments.
Anomalies can come either from real changes in the environment (real drift) or from faulty sensory devices (virtual drift)
arXiv Detail & Related papers (2021-07-28T10:19:58Z) - Anomaly Detection through Transfer Learning in Agriculture and
Manufacturing IoT Systems [4.193524211159057]
In this paper, we analyze data from sensors deployed in an agricultural farm with data from seven different kinds of sensors, and from an advanced manufacturing testbed with vibration sensors.
We show how in these two application domains, predictive failure classification can be achieved, thus paving the way for predictive maintenance.
arXiv Detail & Related papers (2021-02-11T02:37:27Z) - Investigating the Effect of Sensor Modalities in Multi-Sensor
Detection-Prediction Models [8.354898936252516]
We focus on the contribution of sensor modalities towards the model performance.
In addition, we investigate the use of sensor dropout to mitigate the above-mentioned issues.
arXiv Detail & Related papers (2021-01-09T03:21:36Z) - High-Precision Digital Traffic Recording with Multi-LiDAR Infrastructure
Sensor Setups [0.0]
We investigate the impact of fused LiDAR point clouds compared to single LiDAR point clouds.
The evaluation of the extracted trajectories shows that a fused infrastructure approach significantly increases the tracking results and reaches accuracies within a few centimeters.
arXiv Detail & Related papers (2020-06-22T10:57:52Z) - Learning Selective Sensor Fusion for States Estimation [47.76590539558037]
We propose SelectFusion, an end-to-end selective sensor fusion module.
During prediction, the network is able to assess the reliability of the latent features from different sensor modalities.
We extensively evaluate all fusion strategies in both public datasets and on progressively degraded datasets.
arXiv Detail & Related papers (2019-12-30T20:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.