Asynchronous Iterations in Optimization: New Sequence Results and
Sharper Algorithmic Guarantees
- URL: http://arxiv.org/abs/2109.04522v2
- Date: Mon, 3 Apr 2023 17:53:20 GMT
- Title: Asynchronous Iterations in Optimization: New Sequence Results and
Sharper Algorithmic Guarantees
- Authors: Hamid Reza Feyzmahdavian and Mikael Johansson
- Abstract summary: We introduce novel convergence results for asynchronous iterations that appear in the analysis of parallel and distributed optimization algorithms.
Results are simple to apply and give explicit estimates for how the degree of asynchrony impacts the convergence rates of the iterates.
- Score: 10.984101749941471
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce novel convergence results for asynchronous iterations that
appear in the analysis of parallel and distributed optimization algorithms. The
results are simple to apply and give explicit estimates for how the degree of
asynchrony impacts the convergence rates of the iterates. Our results shorten,
streamline and strengthen existing convergence proofs for several asynchronous
optimization methods and allow us to establish convergence guarantees for
popular algorithms that were thus far lacking a complete theoretical
understanding. Specifically, we use our results to derive better iteration
complexity bounds for proximal incremental aggregated gradient methods, to
obtain tighter guarantees depending on the average rather than maximum delay
for the asynchronous stochastic gradient descent method, to provide less
conservative analyses of the speedup conditions for asynchronous
block-coordinate implementations of Krasnoselskii-Mann iterations, and to
quantify the convergence rates for totally asynchronous iterations under
various assumptions on communication delays and update rates.
Related papers
- Asynchronous Distributed Optimization with Delay-free Parameters [9.062164411594175]
This paper develops asynchronous versions of two distributed algorithms, Prox-DGD and DGD-ATC, for solving consensus optimization problems over undirected networks.
In contrast to alternatives, our algorithms can converge to the fixed point set of their synchronous counterparts using step-sizes that are independent of the delays.
arXiv Detail & Related papers (2023-12-11T16:33:38Z) - AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms [45.90015262911875]
We analyze asynchronous-type algorithms for distributed SGD in the heterogeneous setting.
As a by-product of our analysis, we also demonstrate guarantees for gradient-type algorithms such as SGD with random tightness.
arXiv Detail & Related papers (2023-10-31T13:44:53Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Breaking the Convergence Barrier: Optimization via Fixed-Time Convergent
Flows [4.817429789586127]
We introduce a Poly-based optimization framework for achieving acceleration, based on the notion of fixed-time stability dynamical systems.
We validate the accelerated convergence properties of the proposed schemes on a range of numerical examples against the state-of-the-art optimization algorithms.
arXiv Detail & Related papers (2021-12-02T16:04:40Z) - Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and
Beyond [63.59034509960994]
We study shuffling-based variants: minibatch and local Random Reshuffling, which draw gradients without replacement.
For smooth functions satisfying the Polyak-Lojasiewicz condition, we obtain convergence bounds which show that these shuffling-based variants converge faster than their with-replacement counterparts.
We propose an algorithmic modification called synchronized shuffling that leads to convergence rates faster than our lower bounds in near-homogeneous settings.
arXiv Detail & Related papers (2021-10-20T02:25:25Z) - Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free
Optimization [47.03235286622727]
We prove that our new accelerated method requires the same linear speed-up condition as the existing non-accelerated methods.
Our core algorithmic discovery is a new accelerated SVRG variant with sparse updates.
arXiv Detail & Related papers (2021-09-30T17:36:32Z) - Distributed stochastic optimization with large delays [59.95552973784946]
One of the most widely used methods for solving large-scale optimization problems is distributed asynchronous gradient descent (DASGD)
We show that DASGD converges to a global optimal implementation model under same delay assumptions.
arXiv Detail & Related papers (2021-07-06T21:59:49Z) - Decentralized Optimization with Heterogeneous Delays: a Continuous-Time
Approach [6.187780920448871]
We propose a novel continuous-time framework to analyze asynchronous algorithms.
We describe a fully asynchronous decentralized algorithm to minimize the sum of smooth and strongly convex functions.
arXiv Detail & Related papers (2021-06-07T13:09:25Z) - Stochastic Optimization with Laggard Data Pipelines [65.20044914532221]
We show that "dataechoed" extensions of common optimization methods exhibit provable improvements over their synchronous counterparts.
Specifically, we show that in convex optimization with minibatches, data echoing affords speedups on the curvature-dominated part of the convergence rate, while maintaining the optimal statistical rate.
arXiv Detail & Related papers (2020-10-26T14:55:31Z) - A Hybrid-Order Distributed SGD Method for Non-Convex Optimization to
Balance Communication Overhead, Computational Complexity, and Convergence
Rate [28.167294398293297]
We propose a method of distributed gradient descent (SGD) with low communication load and computational complexity, and still fast.
To reduce the computational complexity in each iteration, the worker nodes approximate the directional derivatives with zeroth-order gradient estimation.
arXiv Detail & Related papers (2020-03-27T14:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.