論文の概要: Object recognition for robotics from tactile time series data utilising
different neural network architectures
- arxiv url: http://arxiv.org/abs/2109.04573v1
- Date: Thu, 9 Sep 2021 22:05:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-14 01:47:25.407402
- Title: Object recognition for robotics from tactile time series data utilising
different neural network architectures
- Title(参考訳): 異なるニューラルネットワークアーキテクチャを用いた触覚時系列データからのロボットの物体認識
- Authors: Wolfgang Bottcher, Pedro Machado, Nikesh Lama, T.M. McGinnity
- Abstract要約: 本稿では,コンボリューショナルニューラルネットワーク(CNN)とLong-Short Term Memory(LSTM)ニューラルネットワークアーキテクチャを用いて,触覚データに基づくオブジェクト分類を行う。
我々は,2種類の指先センサ(BioTac SPとWTS-FT)のデータを用いて,これらの手法を比較した。
提案手法は,全時系列データを用いた最大精度を82.4% (BioTac SP fingertips) と90.7% (WTS-FT fingertips) から約94% に改善した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robots need to exploit high-quality information on grasped objects to
interact with the physical environment. Haptic data can therefore be used for
supplementing the visual modality. This paper investigates the use of
Convolutional Neural Networks (CNN) and Long-Short Term Memory (LSTM) neural
network architectures for object classification on Spatio-temporal tactile
grasping data. Furthermore, we compared these methods using data from two
different fingertip sensors (namely the BioTac SP and WTS-FT) in the same
physical setup, allowing for a realistic comparison across methods and sensors
for the same tactile object classification dataset. Additionally, we propose a
way to create more training examples from the recorded data. The results show
that the proposed method improves the maximum accuracy from 82.4% (BioTac SP
fingertips) and 90.7% (WTS-FT fingertips) with complete time-series data to
about 94% for both sensor types.
- Abstract(参考訳): ロボットは、物理的環境と対話するために、把握された物体の高品質な情報を利用する必要がある。
したがって、触覚データは視覚モダリティを補うために使用できる。
本稿では、時空間触覚把握データに基づくオブジェクト分類のための畳み込みニューラルネットワーク(CNN)と長短項記憶(LSTM)ニューラルネットワークアーキテクチャについて検討する。
さらに,2つの異なるフィンガーチップセンサ(biotac sp と wts-ft)のデータを同一の物理的セットアップで比較し,同一の触覚物体分類データセットに対する手法とセンサ間の現実的な比較を可能にした。
さらに,記録データからより多くのトレーニング例を作成する方法を提案する。
提案手法は,全時系列データを用いた最大精度を82.4% (BioTac SP fingertips) と90.7% (WTS-FT fingertips) から約94% に改善した。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Bayesian and Neural Inference on LSTM-based Object Recognition from
Tactile and Kinesthetic Information [0.0]
触覚知覚は触覚(触覚や審美感覚など)に遭遇する感覚のモーダル性を含む
本論文は多モーダル物体認識に焦点をあて,触覚と審美に基づく分類結果を融合する解析的およびデータ駆動手法を提案する。
論文 参考訳(メタデータ) (2023-06-10T12:29:23Z) - Online Recognition of Incomplete Gesture Data to Interface Collaborative
Robots [0.0]
本稿では,ウェアラブルセンサで捉えた静的ジェスチャー(SG)と動的ジェスチャー(DG)の大きな語彙を分類するためのHRIフレームワークを提案する。
認識されたジェスチャーは、朝食の食事を準備する共同作業でロボットを遠隔操作するために使用される。
論文 参考訳(メタデータ) (2023-04-13T18:49:08Z) - Collaborative Learning with a Drone Orchestrator [79.75113006257872]
インテリジェントな無線デバイス群は、ドローンの助けを借りて共有ニューラルネットワークモデルを訓練する。
提案したフレームワークは,トレーニングの大幅な高速化を実現し,ドローンホバリング時間の平均24%と87%の削減を実現している。
論文 参考訳(メタデータ) (2023-03-03T23:46:25Z) - BeCAPTCHA-Type: Biometric Keystroke Data Generation for Improved Bot
Detection [63.447493500066045]
本研究では,キーストローク生体データ合成のためのデータ駆動学習モデルを提案する。
提案手法は,ユニバーサルモデルとユーザ依存モデルに基づく2つの統計的手法と比較する。
実験フレームワークでは16万件の被験者から1億3600万件のキーストロークイベントのデータセットについて検討している。
論文 参考訳(メタデータ) (2022-07-27T09:26:15Z) - A Novel Approach For Analysis of Distributed Acoustic Sensing System
Based on Deep Transfer Learning [0.0]
畳み込みニューラルネットワークは、空間情報を抽出するための非常に有能なツールである。
LSTM(Long-Short term memory)は、シーケンシャルデータを処理するための有効な機器である。
我々のフレームワークのVGG-16アーキテクチャは、50のトレーニングで100%の分類精度が得られる。
論文 参考訳(メタデータ) (2022-06-24T19:56:01Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
本稿では,視覚・センサ・モダリティ(動画)における行動認識を強化するためのフレームワーク,Semantics-Aware Adaptive Knowledge Distillation Networks (SAKDN)を提案する。
SAKDNは複数のウェアラブルセンサーを教師のモダリティとして使用し、RGB動画を学生のモダリティとして使用している。
論文 参考訳(メタデータ) (2020-09-01T03:38:31Z) - TactileSGNet: A Spiking Graph Neural Network for Event-based Tactile
Object Recognition [17.37142241982902]
フレキシブルでイベント駆動の電子スキンの新しい進歩は、すぐに人間に似たタッチ認識能力を持つロボットを養うかもしれない。
これらのユニークな特徴は、触覚学習には適さない畳み込み特徴抽出器のような、現在のディープラーニングアプローチをもたらす可能性がある。
イベントベース触覚物体認識のための新しいスパイキンググラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-08-01T03:35:15Z) - ST-MNIST -- The Spiking Tactile MNIST Neuromorphic Dataset [13.270250399169104]
我々は,触覚型ニューロモルフィックセンサアレイに記述した人手による手書き桁を含む,新しいニューロモルフィック・スパイキング・タクティルMNISTデータセットを作成した。
また、既存の人工スパイクとニューラルネットワークモデルを用いて、ST-MNISTデータセットを評価するための最初の取り組みについても述べる。
論文 参考訳(メタデータ) (2020-05-08T23:44:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。