An Exploratory Study on Long Dialogue Summarization: What Works and
What's Next
- URL: http://arxiv.org/abs/2109.04609v1
- Date: Fri, 10 Sep 2021 01:38:26 GMT
- Title: An Exploratory Study on Long Dialogue Summarization: What Works and
What's Next
- Authors: Yusen Zhang, Ansong Ni, Tao Yu, Rui Zhang, Chenguang Zhu, Budhaditya
Deb, Asli Celikyilmaz, Ahmed Hassan Awadallah and Dragomir Radev
- Abstract summary: We study long dialogue summarization by investigating three strategies to deal with the lengthy input problem and locate relevant information.
Our experimental results on three long dialogue datasets (QMSum, MediaSum, SummScreen) show that the retrieve-then-summarize pipeline models yield the best performance.
- Score: 33.1899354772074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dialogue summarization helps readers capture salient information from long
conversations in meetings, interviews, and TV series. However, real-world
dialogues pose a great challenge to current summarization models, as the
dialogue length typically exceeds the input limits imposed by recent
transformer-based pre-trained models, and the interactive nature of dialogues
makes relevant information more context-dependent and sparsely distributed than
news articles. In this work, we perform a comprehensive study on long dialogue
summarization by investigating three strategies to deal with the lengthy input
problem and locate relevant information: (1) extended transformer models such
as Longformer, (2) retrieve-then-summarize pipeline models with several
dialogue utterance retrieval methods, and (3) hierarchical dialogue encoding
models such as HMNet. Our experimental results on three long dialogue datasets
(QMSum, MediaSum, SummScreen) show that the retrieve-then-summarize pipeline
models yield the best performance. We also demonstrate that the summary quality
can be further improved with a stronger retrieval model and pretraining on
proper external summarization datasets.
Related papers
- Evaluating Very Long-Term Conversational Memory of LLM Agents [95.84027826745609]
We introduce a machine-human pipeline to generate high-quality, very long-term dialogues.
We equip each agent with the capability of sharing and reacting to images.
The generated conversations are verified and edited by human annotators for long-range consistency.
arXiv Detail & Related papers (2024-02-27T18:42:31Z) - SPECTRUM: Speaker-Enhanced Pre-Training for Long Dialogue Summarization [48.284512017469524]
Multi-turn dialogues are characterized by their extended length and the presence of turn-taking conversations.
Traditional language models often overlook the distinct features of these dialogues by treating them as regular text.
We propose a speaker-enhanced pre-training method for long dialogue summarization.
arXiv Detail & Related papers (2024-01-31T04:50:00Z) - Instructive Dialogue Summarization with Query Aggregations [41.89962538701501]
We introduce instruction-finetuned language models to expand the capability set of dialogue summarization models.
We propose a three-step approach to synthesize high-quality query-based summarization triples.
By training a unified model called InstructDS on three summarization datasets with multi-purpose instructive triples, we expand the capability of dialogue summarization models.
arXiv Detail & Related papers (2023-10-17T04:03:00Z) - DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization [127.714919036388]
DIONYSUS is a pre-trained encoder-decoder model for summarizing dialogues in any new domain.
Our experiments show that DIONYSUS outperforms existing methods on six datasets.
arXiv Detail & Related papers (2022-12-20T06:21:21Z) - A Focused Study on Sequence Length for Dialogue Summarization [68.73335643440957]
We analyze the length differences between existing models' outputs and the corresponding human references.
We identify salient features for summary length prediction by comparing different model settings.
Third, we experiment with a length-aware summarizer and show notable improvement on existing models if summary length can be well incorporated.
arXiv Detail & Related papers (2022-09-24T02:49:48Z) - Post-Training Dialogue Summarization using Pseudo-Paraphrasing [12.083992819138716]
We propose to post-train pretrained language models (PLMs) to rephrase from dialogue to narratives.
Comprehensive experiments show that our approach significantly improves vanilla PLMs on dialogue summarization.
arXiv Detail & Related papers (2022-04-28T13:42:19Z) - DialogLM: Pre-trained Model for Long Dialogue Understanding and
Summarization [19.918194137007653]
We present a pre-training framework for long dialogue understanding and summarization.
Considering the nature of long conversations, we propose a window-based denoising approach for generative pre-training.
We conduct extensive experiments on five datasets of long dialogues, covering tasks of dialogue summarization, abstractive question answering and topic segmentation.
arXiv Detail & Related papers (2021-09-06T13:55:03Z) - Multi-View Sequence-to-Sequence Models with Conversational Structure for
Abstractive Dialogue Summarization [72.54873655114844]
Text summarization is one of the most challenging and interesting problems in NLP.
This work proposes a multi-view sequence-to-sequence model by first extracting conversational structures of unstructured daily chats from different views to represent conversations.
Experiments on a large-scale dialogue summarization corpus demonstrated that our methods significantly outperformed previous state-of-the-art models via both automatic evaluations and human judgment.
arXiv Detail & Related papers (2020-10-04T20:12:44Z) - Modality-Balanced Models for Visual Dialogue [102.35406085738325]
The Visual Dialog task requires a model to exploit both image and conversational context information to generate the next response to the dialogue.
We show that previous joint-modality (history and image) models over-rely on and are more prone to memorizing the dialogue history.
We present methods for this integration of the two models, via ensemble and consensus dropout fusion with shared parameters.
arXiv Detail & Related papers (2020-01-17T14:57:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.