AI Agents in Emergency Response Applications
- URL: http://arxiv.org/abs/2109.04646v1
- Date: Fri, 10 Sep 2021 03:24:50 GMT
- Title: AI Agents in Emergency Response Applications
- Authors: Aryan Naim, Ryan Alimo, and Jay Braun
- Abstract summary: Emergency personnel respond to various situations ranging from fire, medical, hazardous materials, industrial accidents, to natural disasters.
Mission-critical "edge AI" situations require low-latency, reliable analytics.
We propose an agent-based architecture for deployment of AI agents via 5G service-based architecture.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emergency personnel respond to various situations ranging from fire, medical,
hazardous materials, industrial accidents, to natural disasters. Situations
such as natural disasters or terrorist acts require a multifaceted response of
firefighters, paramedics, hazmat teams, and other agencies. Engineering AI
systems that aid emergency personnel proves to be a difficult system
engineering problem. Mission-critical "edge AI" situations require low-latency,
reliable analytics. To further add complexity, a high degree of model accuracy
is required when lives are at stake, creating a need for the deployment of
highly accurate, however computationally intensive models to
resource-constrained devices. To address all these issues, we propose an
agent-based architecture for deployment of AI agents via 5G service-based
architecture.
Related papers
- HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions [76.42274173122328]
We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions.
We run 1840 simulations based on 92 scenarios across seven domains (e.g., healthcare, finance, education)
Our experiments show that state-of-the-art LLMs, both proprietary and open-sourced, exhibit safety risks in over 50% cases.
arXiv Detail & Related papers (2024-09-24T19:47:21Z) - EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EAIRiskBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - A Red Teaming Framework for Securing AI in Maritime Autonomous Systems [0.0]
We propose one of the first red team frameworks for evaluating the AI security of maritime autonomous systems.
This framework is a multi-part checklist, which can be tailored to different systems and requirements.
We demonstrate this framework to be highly effective for a red team to use to uncover numerous vulnerabilities within a real-world maritime autonomous systems AI.
arXiv Detail & Related papers (2023-12-08T14:59:07Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - A reinforcement learning based construction material supply strategy
using robotic crane and computer vision for building reconstruction after an
earthquake [7.0046513193263165]
In this paper, the robotic crane with advanced AI algorithms is proposed to provide resources for infrastructure reconstruction after an earthquake.
The proximal policy optimization (PPO), a reinforcement learning (RL) algorithm, is implemented for 3D lift path planning.
Two models are trained through a loading task in different environments by using PPO algorithm, one considering the influence of obstacles and the other not considering obstacles.
arXiv Detail & Related papers (2023-08-30T19:13:23Z) - Artificial Intelligence for Emergency Response [0.6091702876917281]
Emergency response management (ERM) is a challenge faced by communities across the globe.
Data-driven models help reduce human and financial loss and improve design codes, traffic regulations, and safety measures.
This tutorial paper explores four sub-problems within emergency response: incident prediction, incident detection, resource allocation, and resource dispatch.
arXiv Detail & Related papers (2023-06-15T18:16:08Z) - Enhancing Evacuation Planning through Multi-Agent Simulation and
Artificial Intelligence: Understanding Human Behavior in Hazardous
Environments [0.0]
The paper employs Artificial Intelligence (AI) techniques, specifically Multi-Agent Systems (MAS), to construct a simulation model for evacuation.
The primary objective of this paper is to enhance our comprehension of how individuals react and respond during such distressing situations.
arXiv Detail & Related papers (2023-06-11T08:13:42Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z) - ADAPT: An Open-Source sUAS Payload for Real-Time Disaster Prediction and
Response with AI [55.41644538483948]
Small unmanned aircraft systems (sUAS) are becoming prominent components of many humanitarian assistance and disaster response operations.
We have developed the free and open-source ADAPT multi-mission payload for deploying real-time AI and computer vision onboard a sUAS.
We demonstrate the example mission of real-time, in-flight ice segmentation to monitor river ice state and provide timely predictions of catastrophic flooding events.
arXiv Detail & Related papers (2022-01-25T14:51:19Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - Heterogeneous Multi-Agent Reinforcement Learning for Unknown Environment
Mapping [0.0]
We present an actor-critic algorithm that allows a team of heterogeneous agents to learn decentralized control policies for covering an unknown environment.
This task is of interest to national security and emergency response organizations that would like to enhance situational awareness in hazardous areas by deploying teams of unmanned aerial vehicles.
arXiv Detail & Related papers (2020-10-06T12:23:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.