論文の概要: Per Garment Capture and Synthesis for Real-time Virtual Try-on
- arxiv url: http://arxiv.org/abs/2109.04654v1
- Date: Fri, 10 Sep 2021 03:49:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-13 13:22:04.678435
- Title: Per Garment Capture and Synthesis for Real-time Virtual Try-on
- Title(参考訳): 実時間仮想試行のためのパーガーメントキャプチャと合成
- Authors: Toby Chong, I-Chao Shen, Nobuyuki Umetani, Takeo Igarashi
- Abstract要約: 既存の画像ベースワークは、ターゲット服の1つの画像から試着画像を合成しようとする。
ポーズや体の大きさの変化によるしわの変化を再現することは困難であり、衣服を手で引っ張ったり伸ばしたりすることは困難である。
そこで本研究では,このようなリッチなインタラクションを,多くのシステマティックな画像を用いてトレーニングすることで,衣服ごとのキャプチャと合成のワークフローを提案する。
- 参考スコア(独自算出の注目度): 15.128477359632262
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Virtual try-on is a promising application of computer graphics and human
computer interaction that can have a profound real-world impact especially
during this pandemic. Existing image-based works try to synthesize a try-on
image from a single image of a target garment, but it inherently limits the
ability to react to possible interactions. It is difficult to reproduce the
change of wrinkles caused by pose and body size change, as well as pulling and
stretching of the garment by hand. In this paper, we propose an alternative per
garment capture and synthesis workflow to handle such rich interactions by
training the model with many systematically captured images. Our workflow is
composed of two parts: garment capturing and clothed person image synthesis. We
designed an actuated mannequin and an efficient capturing process that collects
the detailed deformations of the target garments under diverse body sizes and
poses. Furthermore, we proposed to use a custom-designed measurement garment,
and we captured paired images of the measurement garment and the target
garments. We then learn a mapping between the measurement garment and the
target garments using deep image-to-image translation. The customer can then
try on the target garments interactively during online shopping.
- Abstract(参考訳): 仮想トライオンはコンピュータグラフィックスと人間のコンピュータインタラクションの有望な応用であり、特にパンデミックの間、現実世界に大きな影響を与える可能性がある。
既存の画像ベースの作品は、対象の衣服の単一の画像からトライオン画像を合成しようとするが、本質的には、可能な相互作用に反応する能力を制限する。
ポーズや体の大きさの変化によるしわの変化を再現することは困難であり、衣服を手で引っ張ったり伸ばしたりすることは困難である。
本稿では,多くのシステマティックな画像でモデルを訓練することにより,このようなリッチなインタラクションを扱うために,衣服ごとのキャプチャと合成ワークフローを提案する。
私たちのワークフローは2つの部分で構成されています。
我々は,運動マネキンを設計し,身体サイズやポーズの異なる対象衣服の詳細な変形を収集する効率的な捕獲プロセスを構築した。
さらに,カスタムデザインの計測服の使用を提案するとともに,測定服と対象服のペア画像も取得した。
次に、深部画像から画像への翻訳を用いて、測定服と対象服のマッピングを学ぶ。
顧客はオンラインショッピング中にターゲットの衣服をインタラクティブに試すことができる。
関連論文リスト
- IMAGDressing-v1: Customizable Virtual Dressing [58.44155202253754]
IMAGDressing-v1は、固定された衣服とオプション条件で自由に編集可能な人間の画像を生成する仮想ドレッシングタスクである。
IMAGDressing-v1は、CLIPのセマンティック特徴とVAEのテクスチャ特徴をキャプチャする衣料UNetを組み込んでいる。
本稿では,凍結自己注意とトレーニング可能なクロスアテンションを含むハイブリッドアテンションモジュールを提案する。
論文 参考訳(メタデータ) (2024-07-17T16:26:30Z) - AniDress: Animatable Loose-Dressed Avatar from Sparse Views Using
Garment Rigging Model [58.035758145894846]
AniDressは、非常にスパースなマルチビュービデオを用いて、ゆるい服装でアニマタブルな人間のアバターを生成する新しい方法である。
身体運動と衣服運動の両方に条件付されたポーズ駆動型変形可能なニューラルラディアンス場を導入し、両方の部品を明示的に制御する。
本手法は,身体から高度に逸脱する自然の衣服のダイナミックスを描画し,目に見えない景色とポーズの両方に一般化することができる。
論文 参考訳(メタデータ) (2024-01-27T08:48:18Z) - ClothFit: Cloth-Human-Attribute Guided Virtual Try-On Network Using 3D
Simulated Dataset [5.260305201345232]
そこで我々はClosFitと呼ばれる新しい仮想試行法を提案する。
被服の実際の大きさと人的属性に基づいて、被服の被服体上のドレーピング形状を予測することができる。
実験結果から,ClosFitはフォトリアリスティックな仮想試行実験において,既存の最先端手法を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2023-06-24T08:57:36Z) - Fill in Fabrics: Body-Aware Self-Supervised Inpainting for Image-Based
Virtual Try-On [3.5698678013121334]
本稿では,FabricatorとSegmenter,Warper,Fuserから構成される自己教師型条件生成対向ネットワークベースのフレームワークを提案する。
布地は、仮装服を入力として設けたときに衣服イメージを再構築し、布地を充填して衣服の全体構造を学習する。
その後、仮想トライオンパイプラインは、学習した表現をFabricatorからWarperに転送して、ターゲットの服をワープして洗練させることでトレーニングされる。
論文 参考訳(メタデータ) (2022-10-03T13:25:31Z) - Dressing Avatars: Deep Photorealistic Appearance for Physically
Simulated Clothing [49.96406805006839]
リアルな衣服の動態とリアルなデータから学んだフォトリアリスティックな外観の両方を示す衣服の明示的なモデリングを施したポーズ駆動アバターを紹介した。
我々の重要な貢献は物理的にインスパイアされた外観ネットワークであり、視界依存的かつダイナミックな影効果を持つ光リアルな外観を生成できる。
論文 参考訳(メタデータ) (2022-06-30T17:58:20Z) - Dressing in the Wild by Watching Dance Videos [69.7692630502019]
本稿では,現実の場面における仮想試行に参画し,現実性と自然性の向上をもたらす。
我々は,衣服の移動をより効果的に進める,wFlowと呼ばれる新しい生成ネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T08:05:45Z) - Style and Pose Control for Image Synthesis of Humans from a Single
Monocular View [78.6284090004218]
StylePoseGANは、ポーズと外観のコンディショニングを別々に受け入れる非制御発電機です。
我々のネットワークは、人間のイメージで完全に教師された方法で訓練され、ポーズ、外観、体の部分を切り離すことができる。
StylePoseGANは、一般的な知覚メトリクスで最新の画像生成忠実度を実現します。
論文 参考訳(メタデータ) (2021-02-22T18:50:47Z) - VOGUE: Try-On by StyleGAN Interpolation Optimization [14.327659393182204]
対象者の画像と衣服を身に着けている人の画像から、対象の衣服を自動的に生成する。
提案手法の核心はポーズ条件付きstylegan2潜在空間であり,各画像からの関心領域をシームレスに結合する。
このアルゴリズムにより, 衣服は所定の形状に応じて変形し, パターンや素材の詳細を保存できる。
論文 参考訳(メタデータ) (2021-01-06T22:01:46Z) - Pose-Guided Human Animation from a Single Image in the Wild [83.86903892201656]
身体ポーズのシーケンスによって制御される人の単一の画像から人間のアニメーションを合成するための新しいポーズ転送方法を提案する。
既存のポーズ転送手法は、新しいシーンに適用する際に重要な視覚的アーティファクトを示す。
我々は,シルエット,衣料ラベル,テクスチャを予測する合成ニューラルネットワークを設計した。
我々は、テスト現場でネットワークを微調整することなく、時間的に一貫した方法で人物のアイデンティティと外観を保存できる人間のアニメーションを合成することができる。
論文 参考訳(メタデータ) (2020-12-07T15:38:29Z) - GarmentGAN: Photo-realistic Adversarial Fashion Transfer [0.0]
GarmentGANは、生成的敵対的な方法で画像ベースの衣服転送を行う。
このフレームワークでは、購入前に仮想的に試行して、さまざまなアパレルタイプに一般化することができる。
論文 参考訳(メタデータ) (2020-03-04T05:01:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。