論文の概要: Heterogeneous Graph Neural Networks for Keyphrase Generation
- arxiv url: http://arxiv.org/abs/2109.04703v1
- Date: Fri, 10 Sep 2021 07:17:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-13 13:45:46.849686
- Title: Heterogeneous Graph Neural Networks for Keyphrase Generation
- Title(参考訳): キーフレーズ生成のためのヘテロジニアスグラフニューラルネットワーク
- Authors: Jiacheng Ye, Ruijian Cai, Tao Gui and Qi Zhang
- Abstract要約: 本稿では,関連する参照から明示的な知識を抽出するグラフベースの新しい手法を提案する。
我々のモデルはまず、あらかじめ定義されたインデックスから、ソースドキュメントに似た文書とキーワードのペアを参照として検索する。
復号処理を導くために、ソース文書と参照の両方から適切な単語を直接コピーする階層的注目・複写機構を導入する。
- 参考スコア(独自算出の注目度): 13.841525616800908
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The encoder-decoder framework achieves state-of-the-art results in keyphrase
generation (KG) tasks by predicting both present keyphrases that appear in the
source document and absent keyphrases that do not. However, relying solely on
the source document can result in generating uncontrollable and inaccurate
absent keyphrases. To address these problems, we propose a novel graph-based
method that can capture explicit knowledge from related references. Our model
first retrieves some document-keyphrases pairs similar to the source document
from a pre-defined index as references. Then a heterogeneous graph is
constructed to capture relationships of different granularities between the
source document and its references. To guide the decoding process, a
hierarchical attention and copy mechanism is introduced, which directly copies
appropriate words from both the source document and its references based on
their relevance and significance. The experimental results on multiple KG
benchmarks show that the proposed model achieves significant improvements
against other baseline models, especially with regard to the absent keyphrase
prediction.
- Abstract(参考訳): encoder-decoderフレームワークは、ソース文書に現れる現在のキーフレーズと、そうでないキーフレーズの両方を予測することで、キーフレーズ生成(KG)タスクの最先端結果を達成する。
しかし、ソースドキュメントのみに依存すると、制御不能で不正確なキーフレーズが生成される。
そこで本研究では,関連する参照から明示的な知識を抽出できるグラフベース手法を提案する。
我々のモデルはまず、あらかじめ定義されたインデックスから、ソースドキュメントに似た文書-キーワードペアを参照として検索する。
その後、異種グラフを構築し、ソース文書とその参照間の異なる粒度の関係をキャプチャする。
復号処理の導出には、その関連性と重要性に基づいて、ソース文書とその参照の両方から適切な単語を直接コピーする階層的注意・複写機構を導入する。
複数のKGベンチマークによる実験結果から,提案モデルが他のベースラインモデルに対して有意な改善を達成できることが示唆された。
関連論文リスト
- SimCKP: Simple Contrastive Learning of Keyphrase Representations [36.88517357720033]
そこで本論文では,(1)文脈認識型フレーズレベルの表現からキーフレーズを抽出する抽出器・ジェネレータと,(2)生成したフレーズのスコアを対応する文書と整列させることで,文書に現れないキーフレーズを生成するリランカと,の2つの段階からなる単純なコントラスト学習フレームワークであるSimCKPを提案する。
論文 参考訳(メタデータ) (2023-10-12T11:11:54Z) - Towards Better Multi-modal Keyphrase Generation via Visual Entity
Enhancement and Multi-granularity Image Noise Filtering [79.44443231700201]
マルチモーダルなキーフレーズ生成は、入力されたテキストイメージペアのコアポイントを表すキーフレーズのセットを作成することを目的としている。
入力されたテキストと画像はしばしば完全に一致しないので、画像はモデルにノイズをもたらす可能性がある。
本稿では,モデル入力を外部知識で豊かにするだけでなく,画像ノイズを効果的にフィルタする,新しいマルチモーダル・キーフレーズ生成モデルを提案する。
論文 参考訳(メタデータ) (2023-09-09T09:41:36Z) - Keyphrase Extraction Using Neighborhood Knowledge Based on Word
Embeddings [17.198907789163123]
我々は、単語埋め込みを背景知識として活用して、単語間グラフに意味情報を加えることにより、グラフベースのランキングモデルを強化する。
提案手法は,確立されたベンチマークデータセットを用いて評価し,単語の埋め込み近傍情報によりモデル性能が向上することを示す。
論文 参考訳(メタデータ) (2021-11-13T21:48:18Z) - Deep Keyphrase Completion [59.0413813332449]
Keyphraseは、非常にコンパクトで簡潔で、意味に満ちた文書内容の正確な情報を提供し、談話理解、組織化、テキスト検索に広く利用されている。
本論文では,文書内容と既知のキーフレーズの数が極めて限られているため,テキストキーフレーズの完全化(KPC)を提案し,文書中のキーフレーズをより多く生成する(科学出版など)。
深層学習フレームワークを通じて、既知のキーフレーズとともに文書内容の深い意味的意味を捉えようとすることから、textitdeep keyphrase completion (DKPC) と命名する。
論文 参考訳(メタデータ) (2021-10-29T07:15:35Z) - Towards Document-Level Paraphrase Generation with Sentence Rewriting and
Reordering [88.08581016329398]
文書レベルのパラフレーズ生成のためのCoRPG(Coherence Relation Guided Paraphrase Generation)を提案する。
グラフGRUを用いて、コヒーレンス関係グラフを符号化し、各文のコヒーレンス対応表現を得る。
我々のモデルは、より多様性とセマンティックな保存を伴う文書パラフレーズを生成することができる。
論文 参考訳(メタデータ) (2021-09-15T05:53:40Z) - Unsupervised Deep Keyphrase Generation [14.544869226959612]
keyphrase生成は、長い文書を敬語句のコレクションにまとめることを目的としている。
ディープニューラルモデルは、このタスクにおいて顕著な成功を示し、文書から欠落するキーフレーズを予測することができる。
キーフレーズ生成のための新しい手法であるAutoKeyGenについて,人間のアノテーションを介さずに提示する。
論文 参考訳(メタデータ) (2021-04-18T05:53:19Z) - Keyphrase Extraction with Dynamic Graph Convolutional Networks and
Diversified Inference [50.768682650658384]
キーワード抽出(KE)は、ある文書でカバーされている概念やトピックを正確に表現するフレーズの集合を要約することを目的としている。
最近のシークエンス・ツー・シークエンス(Seq2Seq)ベースの生成フレームワークはKEタスクで広く使われ、様々なベンチマークで競合性能を得た。
本稿では,この2つの問題を同時に解くために,動的グラフ畳み込みネットワーク(DGCN)を採用することを提案する。
論文 参考訳(メタデータ) (2020-10-24T08:11:23Z) - Select, Extract and Generate: Neural Keyphrase Generation with
Layer-wise Coverage Attention [75.44523978180317]
本稿では,2つの主要成分からなるニューラルキーフレーズ生成モデルであるemphSEG-Netを提案する。
科学的およびWeb文書から得られた7つのキーフレーズ生成ベンチマークの実験結果は、SEG-Netが最先端のニューラル生成手法よりも大きなマージンで優れていることを示している。
論文 参考訳(メタデータ) (2020-08-04T18:00:07Z) - Keyphrase Generation with Cross-Document Attention [28.565813544820553]
キーワード生成は、与えられた文書の本質を要約した一連のフレーズを作成することを目的としている。
本稿では,トランスフォーマーをグローバルな注目を集めるキーフレーズ生成装置CDKGenを提案する。
また,キーフレーズ中の語彙外単語を扱うために,文書から適切な単語を選択することで,モデルを強化するコピー機構も採用している。
論文 参考訳(メタデータ) (2020-04-21T07:58:27Z) - Exclusive Hierarchical Decoding for Deep Keyphrase Generation [63.357895318562214]
キーフレーズ生成(KG)は、文書の主要なアイデアをキーフレーズの集合にまとめることを目的としている。
この設定の以前の作業では、キーフレーズを生成するためのシーケンシャルなデコードプロセスが使用されている。
本稿では,階層的復号化プロセスとソフトかハードかのいずれかを含む排他的階層的復号化フレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-18T02:58:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。