Asking It All: Generating Contextualized Questions for any Semantic Role
- URL: http://arxiv.org/abs/2109.04832v1
- Date: Fri, 10 Sep 2021 12:31:14 GMT
- Title: Asking It All: Generating Contextualized Questions for any Semantic Role
- Authors: Valentina Pyatkin, Paul Roit, Julian Michael, Reut Tsarfaty, Yoav
Goldberg, Ido Dagan
- Abstract summary: We introduce the task of role question generation, which is given a predicate mention and a passage.
We develop a two-stage model for this task, which first produces a context-independent question prototype for each role.
Our evaluation demonstrates that we generate diverse and well-formed questions for a large, broad-coverage of predicates and roles.
- Score: 56.724302729493594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Asking questions about a situation is an inherent step towards understanding
it. To this end, we introduce the task of role question generation, which,
given a predicate mention and a passage, requires producing a set of questions
asking about all possible semantic roles of the predicate. We develop a
two-stage model for this task, which first produces a context-independent
question prototype for each role and then revises it to be contextually
appropriate for the passage. Unlike most existing approaches to question
generation, our approach does not require conditioning on existing answers in
the text. Instead, we condition on the type of information to inquire about,
regardless of whether the answer appears explicitly in the text, could be
inferred from it, or should be sought elsewhere. Our evaluation demonstrates
that we generate diverse and well-formed questions for a large, broad-coverage
ontology of predicates and roles.
Related papers
- PAQA: Toward ProActive Open-Retrieval Question Answering [34.883834970415734]
This work aims to tackle the challenge of generating relevant clarifying questions by taking into account the inherent ambiguities present in both user queries and documents.
We propose PAQA, an extension to the existing AmbiNQ dataset, incorporating clarifying questions.
We then evaluate various models and assess how passage retrieval impacts ambiguity detection and the generation of clarifying questions.
arXiv Detail & Related papers (2024-02-26T14:40:34Z) - Elaborative Simplification as Implicit Questions Under Discussion [51.17933943734872]
This paper proposes to view elaborative simplification through the lens of the Question Under Discussion (QUD) framework.
We show that explicitly modeling QUD provides essential understanding of elaborative simplification and how the elaborations connect with the rest of the discourse.
arXiv Detail & Related papers (2023-05-17T17:26:16Z) - Keeping the Questions Conversational: Using Structured Representations
to Resolve Dependency in Conversational Question Answering [26.997542897342164]
We propose a novel framework, CONVSR (CONVQA using Structured Representations) for capturing and generating intermediate representations as conversational cues.
We test our model on the QuAC and CANARD datasets and illustrate by experimental results that our proposed framework achieves a better F1 score than the standard question rewriting model.
arXiv Detail & Related papers (2023-04-14T13:42:32Z) - CREPE: Open-Domain Question Answering with False Presuppositions [92.20501870319765]
We introduce CREPE, a QA dataset containing a natural distribution of presupposition failures from online information-seeking forums.
We find that 25% of questions contain false presuppositions, and provide annotations for these presuppositions and their corrections.
We show that adaptations of existing open-domain QA models can find presuppositions moderately well, but struggle when predicting whether a presupposition is factually correct.
arXiv Detail & Related papers (2022-11-30T18:54:49Z) - Discourse Analysis via Questions and Answers: Parsing Dependency
Structures of Questions Under Discussion [57.43781399856913]
This work adopts the linguistic framework of Questions Under Discussion (QUD) for discourse analysis.
We characterize relationships between sentences as free-form questions, in contrast to exhaustive fine-grained questions.
We develop the first-of-its-kind QUD that derives a dependency structure of questions over full documents.
arXiv Detail & Related papers (2022-10-12T03:53:12Z) - Discourse Comprehension: A Question Answering Framework to Represent
Sentence Connections [35.005593397252746]
A key challenge in building and evaluating models for discourse comprehension is the lack of annotated data.
This paper presents a novel paradigm that enables scalable data collection targeting the comprehension of news documents.
The resulting corpus, DCQA, consists of 22,430 question-answer pairs across 607 English documents.
arXiv Detail & Related papers (2021-11-01T04:50:26Z) - Open-Retrieval Conversational Machine Reading [80.13988353794586]
In conversational machine reading, systems need to interpret natural language rules, answer high-level questions, and ask follow-up clarification questions.
Existing works assume the rule text is provided for each user question, which neglects the essential retrieval step in real scenarios.
In this work, we propose and investigate an open-retrieval setting of conversational machine reading.
arXiv Detail & Related papers (2021-02-17T08:55:01Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
We introduce INQUISITIVE, a dataset of 19K questions that are elicited while a person is reading through a document.
We show that readers engage in a series of pragmatic strategies to seek information.
We evaluate question generation models based on GPT-2 and show that our model is able to generate reasonable questions.
arXiv Detail & Related papers (2020-10-04T19:03:39Z) - Stay Hungry, Stay Focused: Generating Informative and Specific Questions
in Information-Seeking Conversations [41.74162467619795]
We investigate the problem of generating informative questions in information-asymmetric conversations.
To generate pragmatic questions, we use reinforcement learning to optimize an informativeness metric.
We demonstrate that the resulting pragmatic questioner substantially improves the informativeness and specificity of questions generated over a baseline model.
arXiv Detail & Related papers (2020-04-30T00:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.