Not All Negatives are Equal: Label-Aware Contrastive Loss for
Fine-grained Text Classification
- URL: http://arxiv.org/abs/2109.05427v1
- Date: Sun, 12 Sep 2021 04:19:17 GMT
- Title: Not All Negatives are Equal: Label-Aware Contrastive Loss for
Fine-grained Text Classification
- Authors: Varsha Suresh and Desmond C. Ong
- Abstract summary: We analyse the contrastive fine-tuning of pre-trained language models on two fine-grained text classification tasks.
We adaptively embed class relationships into a contrastive objective function to help differently weigh the positives and negatives.
We find that Label-aware Contrastive Loss outperforms previous contrastive methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fine-grained classification involves dealing with datasets with larger number
of classes with subtle differences between them. Guiding the model to focus on
differentiating dimensions between these commonly confusable classes is key to
improving performance on fine-grained tasks. In this work, we analyse the
contrastive fine-tuning of pre-trained language models on two fine-grained text
classification tasks, emotion classification and sentiment analysis. We
adaptively embed class relationships into a contrastive objective function to
help differently weigh the positives and negatives, and in particular,
weighting closely confusable negatives more than less similar negative
examples. We find that Label-aware Contrastive Loss outperforms previous
contrastive methods, in the presence of larger number and/or more confusable
classes, and helps models to produce output distributions that are more
differentiated.
Related papers
- Simple-Sampling and Hard-Mixup with Prototypes to Rebalance Contrastive Learning for Text Classification [11.072083437769093]
We propose a novel model named SharpReCL for imbalanced text classification tasks.
Our model even outperforms popular large language models across several datasets.
arXiv Detail & Related papers (2024-05-19T11:33:49Z) - Understanding the Detrimental Class-level Effects of Data Augmentation [63.1733767714073]
achieving optimal average accuracy comes at the cost of significantly hurting individual class accuracy by as much as 20% on ImageNet.
We present a framework for understanding how DA interacts with class-level learning dynamics.
We show that simple class-conditional augmentation strategies improve performance on the negatively affected classes.
arXiv Detail & Related papers (2023-12-07T18:37:43Z) - Class Enhancement Losses with Pseudo Labels for Zero-shot Semantic
Segmentation [40.09476732999614]
Mask proposal models have significantly improved the performance of zero-shot semantic segmentation.
The use of a background' embedding during training in these methods is problematic as the resulting model tends to over-learn and assign all unseen classes as the background class instead of their correct labels.
This paper proposes novel class enhancement losses to bypass the use of the background embbedding during training, and simultaneously exploit the semantic relationship between text embeddings and mask proposals by ranking the similarity scores.
arXiv Detail & Related papers (2023-01-18T06:55:02Z) - Learning by Sorting: Self-supervised Learning with Group Ordering
Constraints [75.89238437237445]
This paper proposes a new variation of the contrastive learning objective, Group Ordering Constraints (GroCo)
It exploits the idea of sorting the distances of positive and negative pairs and computing the respective loss based on how many positive pairs have a larger distance than the negative pairs, and thus are not ordered correctly.
We evaluate the proposed formulation on various self-supervised learning benchmarks and show that it not only leads to improved results compared to vanilla contrastive learning but also shows competitive performance to comparable methods in linear probing and outperforms current methods in k-NN performance.
arXiv Detail & Related papers (2023-01-05T11:17:55Z) - Understanding Contrastive Learning Requires Incorporating Inductive
Biases [64.56006519908213]
Recent attempts to theoretically explain the success of contrastive learning on downstream tasks prove guarantees depending on properties of em augmentations and the value of em contrastive loss of representations.
We demonstrate that such analyses ignore em inductive biases of the function class and training algorithm, even em provably leading to vacuous guarantees in some settings.
arXiv Detail & Related papers (2022-02-28T18:59:20Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - CLLD: Contrastive Learning with Label Distance for Text Classificatioin [0.6299766708197883]
We propose Contrastive Learning with Label Distance (CLLD) for learning contrastive classes.
CLLD ensures the flexibility within the subtle differences that lead to different label assignments.
Our experiments suggest that the learned label distance relieve the adversarial nature of interclasses.
arXiv Detail & Related papers (2021-10-25T07:07:14Z) - Boosting few-shot classification with view-learnable contrastive
learning [19.801016732390064]
We introduce contrastive loss into few-shot classification for learning latent fine-grained structure in the embedding space.
We develop a learning-to-learn algorithm to automatically generate different views of the same image.
arXiv Detail & Related papers (2021-07-20T03:13:33Z) - A Theory-Driven Self-Labeling Refinement Method for Contrastive
Representation Learning [111.05365744744437]
Unsupervised contrastive learning labels crops of the same image as positives, and other image crops as negatives.
In this work, we first prove that for contrastive learning, inaccurate label assignment heavily impairs its generalization for semantic instance discrimination.
Inspired by this theory, we propose a novel self-labeling refinement approach for contrastive learning.
arXiv Detail & Related papers (2021-06-28T14:24:52Z) - Incremental False Negative Detection for Contrastive Learning [95.68120675114878]
We introduce a novel incremental false negative detection for self-supervised contrastive learning.
During contrastive learning, we discuss two strategies to explicitly remove the detected false negatives.
Our proposed method outperforms other self-supervised contrastive learning frameworks on multiple benchmarks within a limited compute.
arXiv Detail & Related papers (2021-06-07T15:29:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.