Weakly-Supervised Contrastive Learning for Imprecise Class Labels
- URL: http://arxiv.org/abs/2505.22028v1
- Date: Wed, 28 May 2025 06:50:40 GMT
- Title: Weakly-Supervised Contrastive Learning for Imprecise Class Labels
- Authors: Zi-Hao Zhou, Jun-Jie Wang, Tong Wei, Min-Ling Zhang,
- Abstract summary: We introduce the concept of continuous semantic similarity'' to define positive and negative pairs.<n>We propose a graph-theoretic framework for weakly-supervised contrastive learning.<n>Our framework is highly versatile and can be applied to many weakly-supervised learning scenarios.
- Score: 50.57424331797865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive learning has achieved remarkable success in learning effective representations, with supervised contrastive learning often outperforming self-supervised approaches. However, in real-world scenarios, data annotations are often ambiguous or inaccurate, meaning that class labels may not reliably indicate whether two examples belong to the same class. This limitation restricts the applicability of supervised contrastive learning. To address this challenge, we introduce the concept of ``continuous semantic similarity'' to define positive and negative pairs. Instead of directly relying on imprecise class labels, we measure the semantic similarity between example pairs, which quantifies how closely they belong to the same category by iteratively refining weak supervisory signals. Based on this concept, we propose a graph-theoretic framework for weakly-supervised contrastive learning, where semantic similarity serves as the graph weights. Our framework is highly versatile and can be applied to many weakly-supervised learning scenarios. We demonstrate its effectiveness through experiments in two common settings, i.e., noisy label and partial label learning, where existing methods can be easily integrated to significantly improve performance. Theoretically, we establish an error bound for our approach, showing that it can approximate supervised contrastive learning under mild conditions. The implementation code is available at https://github.com/Speechless-10308/WSC.
Related papers
- Learning from Similarity-Confidence and Confidence-Difference [0.24578723416255752]
We propose a novel Weakly Supervised Learning (WSL) framework that leverages complementary weak supervision signals from multiple perspectives.<n>Specifically, we introduce SconfConfDiff Classification, a method that integrates two distinct forms of weaklabels.<n>We prove that both estimators achieve optimal convergence rates with respect to estimation error bounds.
arXiv Detail & Related papers (2025-08-07T07:42:59Z) - Robust Representation Learning for Unreliable Partial Label Learning [86.909511808373]
Partial Label Learning (PLL) is a type of weakly supervised learning where each training instance is assigned a set of candidate labels, but only one label is the ground-truth.
This is known as Unreliable Partial Label Learning (UPLL) that introduces an additional complexity due to the inherent unreliability and ambiguity of partial labels.
We propose the Unreliability-Robust Representation Learning framework (URRL) that leverages unreliability-robust contrastive learning to help the model fortify against unreliable partial labels effectively.
arXiv Detail & Related papers (2023-08-31T13:37:28Z) - Semantic-aware Contrastive Learning for More Accurate Semantic Parsing [32.74456368167872]
We propose a semantic-aware contrastive learning algorithm, which can learn to distinguish fine-grained meaning representations.
Experiments on two standard datasets show that our approach achieves significant improvements over MLE baselines.
arXiv Detail & Related papers (2023-01-19T07:04:32Z) - Similarity Contrastive Estimation for Self-Supervised Soft Contrastive
Learning [0.41998444721319206]
We argue that a good data representation contains the relations, or semantic similarity, between the instances.
We propose a novel formulation of contrastive learning using semantic similarity between instances called Similarity Contrastive Estimation (SCE)
Our training objective can be considered as soft contrastive learning.
arXiv Detail & Related papers (2021-11-29T15:19:15Z) - A Theory-Driven Self-Labeling Refinement Method for Contrastive
Representation Learning [111.05365744744437]
Unsupervised contrastive learning labels crops of the same image as positives, and other image crops as negatives.
In this work, we first prove that for contrastive learning, inaccurate label assignment heavily impairs its generalization for semantic instance discrimination.
Inspired by this theory, we propose a novel self-labeling refinement approach for contrastive learning.
arXiv Detail & Related papers (2021-06-28T14:24:52Z) - Dynamic Semantic Matching and Aggregation Network for Few-shot Intent
Detection [69.2370349274216]
Few-shot Intent Detection is challenging due to the scarcity of available annotated utterances.
Semantic components are distilled from utterances via multi-head self-attention.
Our method provides a comprehensive matching measure to enhance representations of both labeled and unlabeled instances.
arXiv Detail & Related papers (2020-10-06T05:16:38Z) - Debiased Contrastive Learning [64.98602526764599]
We develop a debiased contrastive objective that corrects for the sampling of same-label datapoints.
Empirically, the proposed objective consistently outperforms the state-of-the-art for representation learning in vision, language, and reinforcement learning benchmarks.
arXiv Detail & Related papers (2020-07-01T04:25:24Z) - Rethinking Class Relations: Absolute-relative Supervised and
Unsupervised Few-shot Learning [157.62595449130973]
We study the fundamental problem of simplistic class modeling in current few-shot learning methods.
We propose a novel Absolute-relative Learning paradigm to fully take advantage of label information to refine the image representations.
arXiv Detail & Related papers (2020-01-12T12:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.