論文の概要: Exploring Task Difficulty for Few-Shot Relation Extraction
- arxiv url: http://arxiv.org/abs/2109.05473v1
- Date: Sun, 12 Sep 2021 09:40:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-14 15:48:20.101583
- Title: Exploring Task Difficulty for Few-Shot Relation Extraction
- Title(参考訳): Few-Shot関係抽出におけるタスクの難しさの探索
- Authors: Jiale Han, Bo Cheng and Wei Lu
- Abstract要約: Few-shot Relation extract (FSRE) は、わずかに注釈付きインスタンスで学習することで、新しい関係を認識することに焦点を当てている。
本稿では,関係ラベル情報を活用することで,より良い表現を学習するコントラスト学習に基づく新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 22.585574542329677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot relation extraction (FSRE) focuses on recognizing novel relations by
learning with merely a handful of annotated instances. Meta-learning has been
widely adopted for such a task, which trains on randomly generated few-shot
tasks to learn generic data representations. Despite impressive results
achieved, existing models still perform suboptimally when handling hard FSRE
tasks, where the relations are fine-grained and similar to each other. We argue
this is largely because existing models do not distinguish hard tasks from easy
ones in the learning process. In this paper, we introduce a novel approach
based on contrastive learning that learns better representations by exploiting
relation label information. We further design a method that allows the model to
adaptively learn how to focus on hard tasks. Experiments on two standard
datasets demonstrate the effectiveness of our method.
- Abstract(参考訳): Few-shot Relation extract (FSRE) は、わずかに注釈付きインスタンスで学習することで、新しい関係を認識することに焦点を当てている。
このようなタスクにはメタラーニングが広く採用されており、ランダムに生成された少数のタスクを訓練して汎用的なデータ表現を学ぶ。
素晴らしい結果が得られたにも拘わらず、既存のモデルはFSREタスクを扱う際にも、その関係はきめ細やかで、互いに類似している。
既存のモデルは、学習プロセスにおいて難しいタスクと簡単なタスクを区別しないからです。
本稿では,関係ラベル情報を利用してより良い表現を学習するコントラスト学習に基づく新しいアプローチを提案する。
さらに、モデルを適応的にハードタスクに集中する方法を学ぶための手法を設計する。
2つの標準データセットの実験により,本手法の有効性が示された。
関連論文リスト
- Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
マルチタスク学習(MTL)は、複数の関連するタスクを共同で学習し、共有表現空間から恩恵を受けるフレームワークである。
MTLは、ほとんど重複しない、あるいは重複しないアノテーションで分類タスクで成功することを示す。
本稿では,分散マッチングによるタスク間の知識交換を可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-02T14:18:11Z) - Robust Task-Oriented Dialogue Generation with Contrastive Pre-training
and Adversarial Filtering [17.7709632238066]
データアーティファクトは機械学習モデルにインセンティブを与え、非伝達可能な一般化を学ぶ。
我々は、MultiWOZのような一般的なデータセットがそのようなデータアーティファクトを含んでいるかどうかを検討する。
本稿では,これらの手法を無視し,一般化可能なパターンを学習することをモデルに推奨する,対照的な学習ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-20T03:13:02Z) - Continual Few-shot Relation Learning via Embedding Space Regularization
and Data Augmentation [4.111899441919165]
従来のタスク知識の破滅的な忘れを回避しつつ,ラベル付きデータが少ない新しい関係パターンを学習する必要がある。
埋め込み空間の正規化とデータ拡張に基づく新しい手法を提案する。
提案手法は,新たな数発タスクに一般化し,リレーショナル埋め込みに対する追加制約を課し,自己管理的なデータ追加を行うことにより,過去のタスクの破滅的な忘れを回避している。
論文 参考訳(メタデータ) (2022-03-04T05:19:09Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
本研究では,ウェアラブル型行動認識タスクにおけるコントラスト学習について検討する。
本稿では,PyTorchライブラリのtextttCL-HAR について述べる。
論文 参考訳(メタデータ) (2022-02-12T06:10:15Z) - Relational Experience Replay: Continual Learning by Adaptively Tuning
Task-wise Relationship [54.73817402934303]
本稿では,2段階の学習フレームワークである経験連続再生(ERR)を提案する。
ERRは、すべてのベースラインの性能を一貫して改善し、現在の最先端の手法を超えることができる。
論文 参考訳(メタデータ) (2021-12-31T12:05:22Z) - Combat Data Shift in Few-shot Learning with Knowledge Graph [42.59886121530736]
現実世界のアプリケーションでは、少数ショットの学習パラダイムはデータシフトに悩まされることが多い。
既存の少数ショット学習アプローチのほとんどは、データシフトを考慮して設計されていない。
本稿では,タスク固有表現とタスク共有表現を抽出するメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-27T12:35:18Z) - Curriculum-Meta Learning for Order-Robust Continual Relation Extraction [12.494209368988253]
連続的な関係抽出の課題に取り組むための新しいカリキュラムメタ学習方法を提案する。
メタ学習とカリキュラム学習を組み合わせて、モデルパラメータを新しいタスクに迅速に適応させる。
与えられたモデルの順序感度の程度を定量的に測定する難易度に基づく新しい指標を提案する。
論文 参考訳(メタデータ) (2021-01-06T08:52:34Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
本稿では,テスト時にアウト・オブ・ディストリビューション・タスクに直面した場合に,効率よく外挿できるメタ強化学習アルゴリズムを提案する。
我々の手法は単純な洞察に基づいており、動的モデルが非政治データに効率的かつ一貫して適応可能であることを認識している。
論文 参考訳(メタデータ) (2020-06-12T13:34:46Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。